首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 691 毫秒
1.
The synthesis of lanthanides other than cerium in the oxidation state +IV has remained a desirable but unmet target until recently, when two examples of TbIV with saturated coordination spheres were isolated. Here we report the third example of an isolated molecular complex of terbium(IV), where the supporting siloxide ligands do not saturate the coordination sphere. The fully characterized six-coordinate complex [TbIV(OSiPh3)4(MeCN)2], 2 -TbPh, shows high stability and the labile MeCN ligands can be replaced by phosphinoxide ligands. Computational studies suggest that the stability is due to a strong π(O−Tb) interaction which is stronger than in the previously reported TbIV complexes. Cyclic-voltammetry experiments demonstrate that non-binding counterions contribute to the stability of TbIV in solution by destabilizing the +III oxidation state, while alkali ions promote TbIV/TbIII electron transfer.  相似文献   

2.
Ceric ammonium nitrate (CAN) or CeIV(NH4)2(NO3)6 is often used in artificial water oxidation and generally considered to be an outer‐sphere oxidant. Herein we report the spectroscopic and crystallographic characterization of [(N4Py)FeIII‐O‐CeIV(OH2)(NO3)4]+ ( 3 ), a complex obtained from the reaction of [(N4Py)FeII(NCMe)]2+ with 2 equiv CAN or [(N4Py)FeIV=O]2+ ( 2 ) with CeIII(NO3)3 in MeCN. Surprisingly, the formation of 3 is reversible, the position of the equilibrium being dependent on the MeCN/water ratio of the solvent. These results suggest that the FeIV and CeIV centers have comparable reduction potentials. Moreover, the equilibrium entails a change in iron spin state, from S =1 FeIV in 2 to S =5/2 in 3 , which is found to be facile despite the formal spin‐forbidden nature of this process. This observation suggests that FeIV=O complexes may avail of reaction pathways involving multiple spin states having little or no barrier.  相似文献   

3.
Electrocatalytic water oxidation using the oxidatively robust 2,7‐[bis(2‐pyridylmethyl)aminomethyl]‐1,8‐naphthyridine ligand (BPMAN)‐based dinuclear copper(II) complex, [Cu2(BPMAN)(μ‐OH)]3+, has been investigated. This catalyst exhibits high reactivity and stability towards water oxidation in neutral aqueous solutions. DFT calculations suggest that the O? O bond formation takes place by an intramolecular direct coupling mechanism rather than by a nucleophilic attack of water on the high‐oxidation‐state CuIV?O moiety.  相似文献   

4.
α‐Diimine ligands react with the platinum(II) alkyl complexes [(Me2S)PtMe2]2 and (Me2S)2PtClMe to form (RDABR′)PtMe2 and (RDABR′)PtClMe (RDABR′=RN=CR′−CR′=NR; R=2,6‐Me2Ph, 2,6‐(CHMe2)2Ph, 3,5‐Me2Ph, 3,5‐(CF3)2Ph, C6H11; R′=Me, H). The oxidation of these complexes with Cl2, I2, N‐chlorosuccinimide, [PtCl6]2− and (TMEDA)PtMe2I2 has been investigated. Attempts to determine the oxidation potentials of the PtII complexes electrochemically yielded only irreversible one‐electron oxidations. However, a qualitative ordering of increasing difficulty of oxidation has been determined for the series (RDABR′)PtMe2<(RDABR′)PtClMe<(RDABR′)PtCl2≪(RDABR′)PtMe(solvent)]+. The oxidation proceeds via a two‐electron inner‐sphere electron transfer from a bridged binuclear intermediate. The oxidation of (RDABR′)PtMe2 by (TMEDA)PtMe2I2 exhibits characteristic third‐order kinetics, first‐order each in [PtII], [PtIV] and [I]. Oxidation by a one‐electron process in MeCN solution results in a rapid subsequent disproportionation to PtIIMe and PtIVMe3 cations with MeCN occupying the fourth or sixth coordination sites. Single‐crystal X‐ray structure determinations for [(2,6‐Me2PhDABMe)PtMe3(MeCN)]+[PtCl6]0.5(MeCN) and [(CyDABH)PtMe3(MeCN)]+[PtCl6]0.5(MeCN) are reported.  相似文献   

5.
Ceric ammonium nitrate (CAN) or CeIV(NH4)2(NO3)6 is often used in artificial water oxidation and generally considered to be an outer-sphere oxidant. Herein we report the spectroscopic and crystallographic characterization of [(N4Py)FeIII-O-CeIV(OH2)(NO3)4]+ ( 3 ), a complex obtained from the reaction of [(N4Py)FeII(NCMe)]2+ with 2 equiv CAN or [(N4Py)FeIV=O]2+ ( 2 ) with CeIII(NO3)3 in MeCN. Surprisingly, the formation of 3 is reversible, the position of the equilibrium being dependent on the MeCN/water ratio of the solvent. These results suggest that the FeIV and CeIV centers have comparable reduction potentials. Moreover, the equilibrium entails a change in iron spin state, from S=1 FeIV in 2 to S=5/2 in 3 , which is found to be facile despite the formal spin-forbidden nature of this process. This observation suggests that FeIV=O complexes may avail of reaction pathways involving multiple spin states having little or no barrier.  相似文献   

6.
We have prepared and fully characterized two isomers of [IrIV(dpyp)2] (dpyp=meso‐2,4‐di(2‐pyridinyl)‐2,4‐pentanediolate). These complexes can cleanly oxidize to [IrV(dpyp)2]+, which to our knowledge represent the first mononuclear coordination complexes of IrV in an N,O‐donor environment. One isomer has been fully characterized in the IrV state, including by X‐ray crystallography, XPS, and DFT calculations, all of which confirm metal‐centered oxidation. The unprecedented stability of these IrV complexes is ascribed to the exceptional donor strength of the ligands, their resistance to oxidative degradation, and the presence of four highly donor alkoxide groups in a plane, which breaks the degeneracy of the d‐orbitals and favors oxidation.  相似文献   

7.
A novel pyrazolate‐bridged ligand providing two {PNN} pincer‐type compartments has been synthesized. Its diiron(II) complex LFe2(OTf)3(CH3CN) ( 1 ; Tf=triflate) features, in solid state, two bridging triflate ligands, with a terminal triflate and a MeCN ligand completing the octahedral coordination spheres of the two high‐spin metal ions. In MeCN solution, 1 is shown to undergo a sequential, reversible, and complete spin transition to the low‐spin state upon cooling. Detailed UV/Vis and 19F NMR spectroscopic studies as well as magnetic measurements have unraveled that spin state switching correlates with a rapid multistep triflate/MeCN ligand exchange equilibrium. The spin transition temperature can be continuously tuned by varying the triflate concentration in solution.  相似文献   

8.
The synthesis and comprehensive characterization of the first dicationic tellurium analogues of N‐heterocyclic carbenes (NHCs) has been reported, in both the +2 and +4 oxidation states. For the +2 oxidation state, a base‐stabilized form of TeCl2 is used as the starting material. The dications are isolated by means of halide metathesis and the solid‐state structures confirm the previously calculated diimine bonding arrangement. For TeIV, a diamine is used in a high‐yielding dehydrohalogen coupling reaction from TeCl4. The dicationic NHC analogue is isolated in a base‐stabilized form through halide abstraction and subsequent coordination by pyridine.  相似文献   

9.
A series of heteroleptic [Ti 1 2X]? complexes have been selectively constructed from a mixture of TiIV ions, a pyridyl catechol ligand (H2 1 ; H2 1 =4‐(3‐pyridyl)catechol), and various bidentate ligands (HX) in the presence of a weak base, in addition to a previously reported [Ti 1 2(acac)]? (acac=acetylacetonate) complex. Comparative studies of these TiIV complexes revealed that [Ti 1 2(trop)]? (trop=tropolonate) is much more stable than the [Ti 1 2(acac)]? complex, which allows the replacement of acac with trop on the [Ti 1 2(acac)]? complex. This TiIV‐centered site‐selective ligand exchange reaction also takes place on a heteronuclear PdII? TiIV ring complex with the preservation of the PdII‐centered coordination structures. Intra‐ and intermolecular linking between two TiIV centers with a flexible or a rigid bis‐tropolone bridging ligand provided a tetranuclear and an octanuclear PdII? TiIV complex, respectively. These higher‐order structures could be efficiently constructed only through a stepwise synthetic route.  相似文献   

10.
The syn and anti isomers of [FeIV(O)(TMC)]2+ (TMC=tetramethylcyclam) represent the first isolated pair of synthetic non‐heme oxoiron(IV) complexes with identical ligand topology, differing only in the position of the oxo unit bound to the iron center. Both isomers have previously been characterized. Reported here is that the syn isomer [FeIV(Osyn)(TMC)(NCMe)]2+ ( 2 ) converts into its anti form [FeIV(Oanti)(TMC)(NCMe)]2+ ( 1 ) in MeCN, an isomerization facilitated by water and monitored most readily by 1H NMR and Raman spectroscopy. Indeed, when H218O is introduced to 2 , the nascent 1 becomes 18O‐labeled. These results provide compelling evidence for a mechanism involving direct binding of a water molecule trans to the oxo atom in 2 with subsequent oxo–hydroxo tautomerism for its incorporation as the oxo atom of 1 . The nonplanar nature of the TMC supporting ligand makes this isomerization an irreversible transformation, unlike for their planar heme counterparts.  相似文献   

11.
The intramolecular gas‐phase reactivity of four oxoiron(IV) complexes supported by tetradentate N4 ligands ( L ) has been studied by means of tandem mass spectrometry measurements in which the gas‐phase ions [FeIV(O)( L )(OTf)]+ (OTf=trifluoromethanesulfonate) and [FeIV(O)( L )]2+ were isolated and then allowed to fragment by collision‐induced decay (CID). CID fragmentation of cations derived from oxoiron(IV) complexes of 1,4,8,11‐tetramethyl‐1,4,8,11‐tetraazacyclotetradecane (tmc) and N,N′‐bis(2‐pyridylmethyl)‐1,5‐diazacyclooctane ( L 8Py2) afforded the same predominant products irrespective of whether they were hexacoordinate or pentacoordinate. These products resulted from the loss of water by dehydrogenation of ethylene or propylene linkers on the tetradentate ligand. In contrast, CID fragmentation of ions derived from oxoiron(IV) complexes of linear tetradentate ligands N,N′‐bis(2‐pyridylmethyl)‐1,2‐diaminoethane (bpmen) and N,N′‐bis(2‐pyridylmethyl)‐1,3‐diaminopropane (bpmpn) showed predominant oxidative N‐dealkylation for the hexacoordinate [FeIV(O)( L )(OTf)]+ cations and predominant dehydrogenation of the diaminoethane/propane backbone for the pentacoordinate [FeIV(O)( L )]2+ cations. DFT calculations on [FeIV(O)(bpmen)] ions showed that the experimentally observed preference for oxidative N‐dealkylation versus dehydrogenation of the diaminoethane linker for the hexa‐ and pentacoordinate ions, respectively, is dictated by the proximity of the target C? H bond to the oxoiron(IV) moiety and the reactive spin state. Therefore, there must be a difference in ligand topology between the two ions. More importantly, despite the constraints on the geometries of the TS that prohibit the usual upright σ trajectory and prevent optimal σCH–σ* overlap, all the reactions still proceed preferentially on the quintet (S=2) state surface, which increases the number of exchange interactions in the d block of iron and leads thereby to exchange enhanced reactivity (EER). As such, EER is responsible for the dominance of the S=2 reactions for both hexa‐ and pentacoordinate complexes.  相似文献   

12.
The perfluorinated dihydrophenazine derivative (perfluoro‐5,10‐bis(perfluorophenyl)‐5,10‐dihydrophenazine) (“phenazineF”) can be easily transformed to a stable and weighable radical cation salt by deelectronation (i.e. oxidation) with Ag[Al(ORF)4]/ Br2 mixtures (RF=C(CF3)3). As an innocent deelectronator it has a strong and fully reversible half‐wave potential versus Fc+/Fc in the coordinating solvent MeCN (E°′=1.21 V), but also in almost non‐coordinating oDFB (=1,2‐F2C6H4; E°′=1.29 V). It allows for the deelectronation of [FeIIICp*2]+ to [FeIV(CO)Cp*2]2+ and [FeIV(CN‐tBu)Cp*2]2+ in common laboratory solvents and is compatible with good σ‐donor ligands, such as L=trispyrazolylmethane, to generate novel [M(L)x]n+ complex salts from the respective elemental metals.  相似文献   

13.
A new one‐dimensional platinum mixed‐valence complex with nonhalogen bridging ligands, namely catena‐poly[[[bis(ethane‐1,2‐diamine‐κ2N,N′)platinum(II)]‐μ‐thiocyanato‐κ2S:S‐[bis(ethane‐1,2‐diamine‐κ2N,N′)platinum(IV)]‐μ‐thiocyanato‐κ2S:S] tetrakis(perchlorate)], {[Pt2(SCN)2(C2H8N2)4](ClO4)4}n, has been isolated. The PtII and PtIV atoms are located on centres of inversion and are stacked alternately, linked by the S atoms of the thiocyanate ligands, forming an infinite one‐dimensional chain. The PtIV—S and PtII...S distances are 2.3933 (10) and 3.4705 (10) Å, respectively, and the PtIV—S...PtII angle is 171.97 (4)°. The introduction of nonhalogen atoms as bridging ligands in this complex extends the chemical modifications possible for controlling the amplitude of the charge‐density wave (CDW) state in one‐dimensional mixed‐valence complexes. The structure of a discrete PtIV thiocyanate compound, bis(ethane‐1,2‐diamine‐κ2N,N′)bis(thiocyanato‐κS)platinum(IV) bis(perchlorate) 1.5‐hydrate, [Pt(SCN)2(C4H8N2)2](ClO4)2·1.5H2O, has monoclinic (C2) symmetry. Two S‐bound thiocyanate ligands are located in trans positions, with an S—Pt—S angle of 177.56 (3)°.  相似文献   

14.
The two‐step one‐pot oxidative decarbonylation of [Fe2(S2C2H4)(CO)4(PMe3)2] ( 1 ) with [FeCp2]PF6, followed by addition of phosphane ligands, led to a series of diferrous dithiolato carbonyls 2 – 6 , containing three or four phosphane ligands. In situ measurements indicate efficient formation of 1 2+ as the initial intermediate of the oxidation of 1 , even when a deficiency of the oxidant was employed. Subsequent addition of PR3 gave rise to [Fe2(S2C2H4)(μ‐CO)(CO)3(PMe3)3]2+ ( 2 ) and [Fe2(S2C2H4)(μ‐CO)(CO)2(PMe3)2(PR3)2]2+ (R=Me 3 , OMe 4 ) as principal products. One terminal CO ligand in these complexes was readily substituted by MeCN, and [Fe2(S2C2H4)(μ‐CO)(CO)2(PMe3)3(MeCN)]2+ ( 5 ) and [Fe2(S2C2H4)(μ‐CO)(CO)(PMe3)4(MeCN)]2+ ( 6 ) were fully characterized. Relevant to the Hred state of the active site of Fe‐only hydrogenases, the unsymmetrical derivatives 5 and 6 feature a semibridging CO ligand trans to a labile coordination site.  相似文献   

15.
The thermal and photochemical reactions of a newly synthesized complex, [RuII(TPA)(tpphz)]2+ ( 1 ; TPA=tris(2‐pyridylmethyl)amine, tpphz=tetrapyrido[3,2‐a:2′,3′‐c:3′′,2′′‐h: 2′′′,3′′′‐j]phenazine), and its derivatives have been investigated. Heating a solution of complex 1 (closed form) and its derivatives in MeCN caused the partial dissociation of one pyridylmethyl moiety of the TPA ligand and the resulting vacant site on the RuII center was occupied by a molecule of MeCN from the solvent to give a dissociated complex, [RuII3‐TPA)(tpphz)(MeCN)]2+ ( 1′ , open form), and its derivatives, respectively, in quantitative yields. The thermal dissociation reactions were investigated on the basis of kinetics analysis, which indicated that the reactions proceeded through a seven‐coordinate transition state. Although the backwards reaction was induced by photoirradiation of the MLCT absorption bands, the photoreaction of complex 1′ reached a photostationary state between complexes 1 and 1′ and, hence, the recovery of complex 1 from complex 1′ was 67 %. Upon protonation of complex 1 at the vacant site of the tpphz ligand, the efficiency of the photoinduced recovery of complex 1 +H+ from complex 1′ +H+ improved to 83 %. In contrast, dinuclear μ‐tpphz complexes 2 and 3 , which contained the RuII(TPA)(tpphz) unit and either a RuII(bpy)2 or PdIICl2 moiety on the other coordination edge of the tpphz ligand, exhibited 100 % photoconversion from their open forms into their closed forms ( 2′ → 2 and 3′ → 3 ). These results are the first examples of the complete photochromic structural change of a transition‐metal complex, as represented by complete interconversion between its open and closed forms. Scrutinization by performing optical and electrochemical measurements allowed us to propose a rationale for how metal coordination at the vacant site of the tpphz ligand improves the efficiency of photoconversion from the open form into the closed form. It is essential to lower the energy level of the triplet metal‐to‐ligand charge‐transfer excited state (3MLCT*) of the closed form relative to that of the triplet metal‐centered excited state (3MC*) by metal coordination. This energy‐level manipulation hinders the transition from the 3MLCT* state into the 3MC* state in the closed form to block the partial photodissociation of the TPA ligand.  相似文献   

16.
A comparative kinetic study of the reactions of two mixed valence manganese(III,IV) complexes of macrocyclic ligands, [L1MnIV(O)2MnIIIL1], 1 (L1 = 1,4,8,11‐tetraazacyclotetradecane) and [L2MnIV(O)2MnIIIL2], 2 (L2 = 1,4,7,10‐tetraazacyclododecane) with thiosulfate has been carried out by spectrophotometry in aqueous buffer at 30°C. Reaction between complex 1 and thiosulfate follows a first‐order rate saturation kinetics. The pH dependency and kinetic evidences suggest the participation of two complex species of MnIII(μ‐O)2MnIV under the experimental conditions. Detailed kinetic study shows that reduction of 2 proceeds through an autocatalytic path where the intermediate (MnIII)2 species has been assumed to catalyze the reaction. The difference in the reaction mechanisms is ascribed to the difference in stability of the intermediate complex species, the evidence for which comes from the electrochemical behavior of the complexes and time dependent EPR spectroscopic measurements during the reduction of 2 . © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 119–128, 2004  相似文献   

17.
The oxidation of light alkanes that is catalyzed by heme and nonheme iron enzymes is widely proposed to involve highly reactive {FeV?O} species or {FeIV?O} ligand cation radicals. The identification of these high‐valent iron species and the development of an iron‐catalyzed oxidation of light alkanes under mild conditions are of vital importance. Herein, a combination of tridentate and bidentate ligands was used for the generation of highly reactive nonheme {Fe?O} species. A method that employs [FeIII(Me3tacn)(Cl‐acac)Cl]+ as a catalyst in the presence of oxone was developed for the oxidation of hydrocarbons, including cyclohexane, propane, and ethane (Me3tacn=1,4,7‐trimethyl‐1,4,7‐triazacyclononane; Cl‐acac=3‐chloro‐acetylacetonate). The complex [FeIII(Tp)2]+ and oxone enabled stoichiometric oxidation of propane and ethane. ESI‐MS, EPR and UV/Vis spectroscopy, 18O labeling experiments, and DFT studies point to [FeIV(Me3tacn)({Cl‐acac}.+)(O)]2+ as the catalytically active species.  相似文献   

18.
Density functional theory (DFT) is employed to: 1) propose a viable catalytic cycle consistent with our experimental results for the mechanism of chemically driven (CeIV) O2 generation from water, mediated by nonheme iron complexes; and 2) to unravel the role of the ligand on the nonheme iron catalyst in the water oxidation reaction activity. To this end, the key features of the water oxidation catalytic cycle for the highly active complexes [Fe(OTf)2(Pytacn)] (Pytacn: 1‐(2′‐pyridylmethyl)‐4,7‐dimethyl‐1,4,7‐triazacyclononane; OTf: CF3SO3?) ( 1 ) and [Fe(OTf)2(mep)] (mep: N,N′‐bis(2‐pyridylmethyl)‐N,N′‐dimethyl ethane‐1,2‐diamine) ( 2 ) as well as for the catalytically inactive [Fe(OTf)2(tmc)] (tmc: N,N′,N′′,N′′′‐tetramethylcyclam) ( 3 ) and [Fe(NCCH3)(MePy2CH‐tacn)](OTf)2 (MePy2CH‐tacn: N‐(dipyridin‐2‐yl)methyl)‐N′,N′′‐dimethyl‐1,4,7‐triazacyclononane) ( 4 ) were analyzed. The DFT computed catalytic cycle establishes that the resting state under catalytic conditions is a [FeIV(O)(OH2)(LN4)]2+ species (in which LN4=Pytacn or mep) and the rate‐determining step is the O?O bond‐formation event. This is nicely supported by the remarkable agreement between the experimental (ΔG=17.6±1.6 kcal mol?1) and theoretical (ΔG=18.9 kcal mol?1) activation parameters obtained for complex 1 . The O?O bond formation is performed by an iron(V) intermediate [FeV(O)(OH)(LN4)]2+ containing a cis‐FeV(O)(OH) unit. Under catalytic conditions (CeIV, pH 0.8) the high oxidation state FeV is only thermodynamically accessible through a proton‐coupled electron‐transfer (PCET) process from the cis‐[FeIV(O)(OH2)(LN4)]2+ resting state. Formation of the [FeV(O)(LN4)]3+ species is thermodynamically inaccessible for complexes 3 and 4 . Our results also show that the cis‐labile coordinative sites in iron complexes have a beneficial key role in the O?O bond‐formation process. This is due to the cis‐OH ligand in the cis‐FeV(O)(OH) intermediate that can act as internal base, accepting a proton concomitant to the O?O bond‐formation reaction. Interplay between redox potentials to achieve the high oxidation state (FeV?O) and the activation energy barrier for the following O?O bond formation appears to be feasible through manipulation of the coordination environment of the iron site. This control may have a crucial role in the future development of water oxidation catalysts based on iron.  相似文献   

19.
Two isotypic mononuclear discrete complexes [Co(MeCN)4(tcp)2] · 2MeCN ( 1 ) and [Ni(MeCN)4(tcp)2] · 2MeCN ( 2 ) containing the tetracyanopyrrolide anion [C4(CN)4N] (tcp) were synthesized from [Me4N]tcp and the respective metal perchlorates in acetone/acetonitrile. Tcp coordinates to the transition metal atoms in η1 fashion via the nitrogen atom of the pyrrole ring. No coordination via the cyano groups is observed. Both complexes show nearly ideal paramagnetic behavior according to the Curie law with magnetic moments of 4.98 μB for 1 and 3.09 μB for 2 . In the presence of Cu2+ ions tcp reacts with traces of water under hydrolysis of one cyano group to tricyanopyrrole‐2‐carboxamide (NC4(CN)3C(O)NH2) (tcpc). From solutions in DMF the complex [Cu(tcpc)2(DMF)2] ( 3 ) is isolated.  相似文献   

20.
A new family of ruthenium complexes based on the N‐pentadentate ligand Py2Metacn (N‐methyl‐N′,N′′‐bis(2‐picolyl)‐1,4,7‐triazacyclononane) has been synthesised and its catalytic activity has been studied in the water‐oxidation (WO) reaction. We have used chemical oxidants (ceric ammonium nitrate and NaIO4) to generate the WO intermediates [RuII(OH2)(Py2Metacn)]2+, [RuIII(OH2)(Py2Metacn)]3+, [RuIII(OH)(Py2Metacn)]2+ and [RuIV(O)(Py2Metacn)]2+, which have been characterised spectroscopically. Their relative redox and pH stability in water has been studied by using UV/Vis and NMR spectroscopies, HRMS and spectroelectrochemistry. [RuIV(O)(Py2Metacn)]2+ has a long half‐life (>48 h) in water. The catalytic cycle of WO has been elucidated by using kinetic, spectroscopic, 18O‐labelling and theoretical studies, and the conclusion is that the rate‐determining step is a single‐site water nucleophilic attack on a metal‐oxo species. Moreover, [RuIV(O)(Py2Metacn)]2+ is proposed to be the resting state under catalytic conditions. By monitoring CeIV consumption, we found that the O2 evolution rate is redox‐controlled and independent of the initial concentration of CeIV. Based on these facts, we propose herein that [RuIV(O)(Py2Metacn)]2+ is oxidised to [RuV(O)(Py2Metacn)]2+ prior to attack by a water molecule to give [RuIII(OOH)(Py2Metacn)]2+. Finally, it is shown that the difference in WO reactivity between the homologous iron and ruthenium [M(OH2)(Py2Metacn)]2+ (M=Ru, Fe) complexes is due to the difference in the redox stability of the key MV(O) intermediate. These results contribute to a better understanding of the WO mechanism and the differences between iron and ruthenium complexes in WO reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号