首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 414 毫秒
1.
The focus of this work is the preparation of aramid nanofibers via electrospinning technology and the study of their adsorption properties. In this article, aramid nanofibers were prepared by electrospinning aramid fibers solution with the addition of lithium chloride (LiCl). It showed a good adsorption capacity when methylene blue (MB) was used as the model target. There were much larger adsorption amounts and faster kinetics of uptaking target species of electrospun aramid nanofibers to MB than that of electrospun polyethersulfone (PES) nanofibers. Compared with activated carbon, aramid nanofibers also have a much faster adsorption rate to MB. Aramid nanofibers were subsequently used to effectively remove endocrine disruptors such as bisphenol A (BPA), phenol (Phe), and p‐hydroquinone (BPhe) from their aqueous solutions. Additionally, molecule imprinted technology enhances aramid nanofibers with much higher adsorption amounts and special adsorption property for endocrine disruptors. These results showed that aramid nanofibers have the potential to be used in environmental applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

2.
SiO2/TiO2 hybrid nanofibers were prepared by electrospinning and applied for photocatalytic degradation of methylene blue (MB). The phase structure, specific surface area, and surface morphologies of the SiO2/TiO2 hybrid nanofibers were characterized through thermogravimetry (TG), X-ray diffraction (XRD) analysis, Brunauer–Emmett–Teller (BET) analysis, scanning electron microscopy (SEM), etc. XRD measurements indicated that doping of silica into TiO2 nanofibers can delay the phase transition from anatase to rutile and decrease the grain size. SEM and BET characterization proved that silica doping can remarkably enhance the porosity of the SiO2/TiO2 hybrid nanofibers. The MB adsorption capacity and photocatalytic activity of the SiO2/TiO2 hybrid nanofibers were distinguished experimentally. It was found that, although increased silica doping content could enhance the MB adsorption capacity, the intrinsic photocatalytic activity gradually dropped. The SiO2 (10 %)/TiO2 composite nanofibers exhibited the highest MB degradation rate, being superior to SiO2 (20 %)/TiO2 or pure TiO2.  相似文献   

3.
Electrospinning method was used to synthesize porous SiO2 nanofibers. The adsorption of Methyl Orange and Safranin O by porous SiO2 nanofibers was carried out by varying the parameters such as pH, contact time, adsorbent dose, dye concentration, and temperature. Equilibrium adsorption data followed Langmuir isotherms. Kinetic adsorption followed second-order rate kinetics model. The maximum adsorption capacity for Methyl Orange and Safranin O was found to be 730.9 mg/g and 960.4 mg/g, respectively. Acidic pH was favorable for the adsorption of Methyl Orange while basic pH was favorable for the adsorptions of Safranin O. Modeling study suggested the major mode of adsorption, while thermodynamic study showed the endothermic reactions. This effort has pronounced impact on environmental applications of SiO2 nanofibers as auspicious adsorbent nanofibers for organic material from aqueous solution.  相似文献   

4.
以N,N-二甲基甲酰胺(DMF)为溶剂, 利用静电纺丝法制备了聚丙烯腈(PAN)/β-环糊精(β-CD)纳米纤维. 通过场发射扫描电镜、红外光谱和粉末XRD对纳米纤维进行了表征, 并检测了纺丝溶液的电导率和黏度. 结果表明, β-CD的添加量可以改善纳米纤维的形貌, 固定在纤维上的β-CD保留了空腔结构, 为其在纳米纤维中发挥超分子特性提供了可能. 通过紫外-可见光谱法研究了PAN/β-CD纤维对亚甲基蓝(MB)溶液的吸附性能. 结果表明, 纳米纤维中的β-CD显著提高了PAN/β-CD纤维对MB的吸附能力, 使其在吸附分离、电化学传感器及药物控制释放等领域具有潜在的应用价值.  相似文献   

5.
TiO2/Bi2WO6 composite nanofibers have been successfully synthesized by a simple electrospinning process. XRD, SEM, HR-TEM, nitrogen adsorption–desorption isotherms and UV–visible diffuse reflectance spectra were used to characterize the composite nanofibers. The composite fibers with diameters about 100 nm was composed of nanoparticles and possessed of high specific surface area (49.6 m2 g?1) and porous structure. Besides, the TiO2/Bi2WO6 composite nanofibers exhibited excellent visible photocatalytic property in the photodegradation of methylene blue (MB), and over 97.2 % of MB was degraded within 5.5 h.  相似文献   

6.
以SiO2为成核中心,钛酸四丁酯为钛源,分别以多羟基化合物乙二醇、丙三醇、葡萄糖和聚乙烯醇为联接剂,采用水解沉淀法制备了碳掺杂和包覆的多孔SiO2/TiO2-xCx/C可见光响应型光催化剂。采用X-射线衍射(XRD)、透射电子显微镜(TEM)、X-射线光电子能谱(XPS)、傅里叶变换-红外光谱(FTIR)、比表面积(BET)和紫外-可见(UV-Vis)漫反射光谱对样品进行表征。对不同结构样品的形成机理进行了分析。以次甲基蓝(MB)溶液为模拟废水,对样品的吸附性能和可见光催化性能进行了评价。结果表明,多羟基化合物对材料的结构和性能有重要影响。碳的掺杂和包覆使材料的吸收光谱包含了整个可见光区,而多孔结构使材料的吸附性能得到提高。以聚乙烯醇为原料所得样品吸附性能最好,30 min内吸附率达到70%;而以丙三醇为原料所得样品具有最好的可见光催化性能,40 min内次甲基蓝的降解率达到95%。  相似文献   

7.
Because of its chemical properties, sawdust displays poor anionic exchange capacity. Here we demonstrate that sawdust modification with methylene blue (MB) dye represents an interesting and facile alternative to render this natural biomaterial capable to accumulate anionic species. MB adsorption onto sawdust was monitored by cyclic voltammetry and experimental parameters carefully optimized. Under the ideal experimental conditions (composition of accumulation and desorption solution, accumulation and desorption time and the nature of the electrolytic solution), the adsorbed MB showed poor mobility, which results in the absence of the characteristic electrochemical signal of MB. The ability of the material to accumulate anionic species was thus evaluated using Fe(CN)63? as a model anions. The slow Fe(CN)63?/4? system recorded onto the electrode modified by pristine sawdust (P/SFE) become fast and reversible after immobilization of MB onto P/SFE (MB/SFE). Electrochemical impedance spectroscopy confirms this result through the spectacular decrease of charge transfer resistance after MB adsorption (from 83 kΩ on P/SFE to 637 Ω on MB/SFE). MB/SFE was applied to the electroanalysis of nitrites and a sensitivity of 7.4 μA mM?1 was obtained. Although this sensitivity was less important compared to that obtained on glassy carbon electrode (9.4 μA mM?1), the dye modified electrode displays by far the best reproducibility even at higher nitrite concentration.  相似文献   

8.
The presence of organic dyes from industrial wastewater can cause pollution and exacerbate environmental problems; therefore, in the present work, activated carbon was synthesized from locally available oil palm trunk (OPT) biomass as a low-cost adsorbent to remove synthetic dye from aqueous media. The physical properties of the synthesized oil palm trunk activated carbon (OPTAC) were analyzed by SEM, FTIR-ATR, and XRD. The concurrent effects of the process variables (adsorbent dosage (g), methylene blue (MB) concentration (mg/L), and contact time (h)) on the MB removal percentage from aqueous solution were studied using a three-factor three-level Box–Behnken design (BBD) of response surface methodology (RSM), followed by the optimization of MB adsorption using OPTAC as the adsorbent. Based on the results of the analysis of variance (ANOVA) for the three parameters considered, adsorbent dosage (X1) is the most crucial parameter, with an F-value of 1857.43, followed by MB concentration (X2) and contact time (X3) with the F-values of 95.60 and 29.48, respectively. Furthermore, the highest MB removal efficiency of 97.9% was achieved at the optimum X1, X2, and X3 of 1.5 g, 200 mg/L, and 2 h, respectively.  相似文献   

9.
Microporous- and mesoporous-activated carbons were produced from longan seed biomass through physical activation with CO2 under the same activation conditions of time and temperature. The specially prepared mesoporous carbon showed the maximum porous properties with the specific surface area of 1773 m2/g and mesopore volume of 0.474 cm3/g which accounts for 44.1% of the total pore volume. These activated carbons were utilized as porous adsorbents for the removal of methylene blue (MB) from an aqueous solution and their effectiveness was evaluated for both the adsorption kinetics and capacity. The adsorption kinetic data of MB were analyzed by the pseudo-first-order model, the pseudo-second-order model, and the pore-diffusion model equations. It was found that the adsorption kinetic behavior for all carbons tested was best described by the pseudo-second-order model. The effective pore diffusivity (De) derived from the pore-diffusion model had the values of 4.657 × 10−7–6.014 × 10−7 cm2/s and 4.668 × 10−7–19.920 × 10−7 cm2/s for the microporous- and mesoporous-activated carbons, respectively. Three well-known adsorption models, namely the Langmuir, Freundlich and Redlich–Peterson equations were tested with the experimental MB adsorption isotherms, and the results showed that the Redlich–Peterson model provided the overall best fitting of the isotherm data. In addition, the maximum capacity for MB adsorption of 1000 mg/g was achieved with the mesoporous carbon having the largest surface area and pore volume. The initial pH of MB solution had virtually no effect on the adsorption capacity and removal efficiency of the methylene blue dye. Increasing temperature over the range from 35 to 55 °C increased the adsorption of methylene blue, presumably caused by the increase in the diffusion rate of methylene blue to the adsorption sites that could promote the interaction frequency between the adsorbent surface and the adsorbate molecules. Overall, the high surface area mesoporous carbon was superior to the microporous carbon in view of the adsorption kinetics and capacity, when both carbons were used for the removal of MB from an aqueous solution.  相似文献   

10.
Cheap and efficient adsorbents to remove contaminants of toxic dye molecules from wastewater are strongly in demand for environmental reasons. This study provides a novel design of a monolithic adsorbent from abundant materials via a facile synthetic procedure, which can greatly reduce the problems of the tedious separation of adsorbents from treated wastes. A hierarchically porous cellulose/activated carbon (cellulose/AC) composite monolith was prepared by thermally-induced phase separation of cellulose acetate in the presence of AC, using a mixture of DMF and 1-hexanol, followed by alkaline hydrolysis. The composite monolith had alarge specific surface area with mesopore distribution. It not only showed high uptake capacity towards methylene blue (MB) or rhodamine B (RhB) but could also simultaneously adsorb MB and RhB from their mixture, in which the adsorption of one dye was not influenced by the other one. Remarkable effects of solution pH, initial concentration of dye (C 0), contact time, adsorbent dosage and temperature on the adsorption of MB and RhB onto the composite monolith were demonstrated. The binding data for MB and RhB adsorption on the composite monolith fitted the Freundlich model well, suggesting a heterogeneous surface of the composite monolith. The monolith could retain around 90% of its adsorption capacity after 8 times reuse. These data demonstrate that the cellulose/AC composite monolith has a large potential as a promising adsorbent of low cost and convenient separation for dye in wastewater.  相似文献   

11.
This work deals with examining the performance of xerogel-based activated carbons (XACs), which were synthesized from aliphatic aldehydes of different carbon chain lengths. These XACs were compared with those synthesized from commonly synthesized XACs. The performance of the new xerogels was determined by examining the thermo-gravimetric analysis (TGA) and Fourier transform infrared (FTIR); however, the XACs were studied using infrared spectra (IR), scanning electron microscopy (SEM), and their adsorption capacities in gas and aqueous media (nitrogen adsorption, iodine number, adsorption of phenol and methylene blue, MB). The adsorption behavior of these investigated XACs to MB was studied in detail, using the Langmuir and Freundlich adsorption equations, in addition to kinetic (Lagergren first-order and pseudo-second-order) and thermodynamic models. The results show that long -chain aldehydes have a significant effect on increasing the total pore volume (VT). Glutaraldehyde-based carbon xerogel is recommended as an economically superior adsorbent with an SBET x yield of 571.9 m2/g. XACs from glutaraldehyde and propionaldehyde have higher surface area than commonly synthesized ACs from formaldehyde (F), Phenol/F, Tanin/F-, Polybenzooxazine/F, and Pyrogallol/F. The best models used for MB adsorption onto XACs are Langmuir and pseudo-second-order kinetic equations. The negative values of thermodynamic parameter ΔGº and positive values of ΔHº indicate the MB adsorption process is spontaneous and endothermic.  相似文献   

12.
This study assesses the performance of optimized acacia wood-based activated carbon (AWAC) as an adsorbent for methylene blue (MB) dye removal in aqueous solution. AWAC was prepared via a physicochemical activation process that consists of potassium hydroxide (KOH) treatment, followed by carbon dioxide (CO2) gasification under microwave heating. By using response surface methodology (RSM), the optimum preparation conditions of radiation power, radiation time, and KOH-impregnation ratio (IR) were determined to be 360 W, 4.50 min, and 0.90 g/g respectively, which resulted in 81.20 mg/g of MB dye removal and 27.96% of AWAC’s yield. Radiation power and IR had a major effect on MB dye removal while radiation power and radiation time caused the greatest impact on AWAC’s yield. BET surface area, mesopore surface area, and pore volume of optimized AWAC were found to be 1045.56 m2/g, 689.77 m2/g, and 0.54 cm3/g, respectively. Adsorption of MB onto AWAC followed Langmuir and pseudo-second order for isotherm and kinetic studies respectively, with a Langmuir monolayer adsorption capacity of 338.29 mg/g. Mechanism studies revealed that the adsorption process was controlled by film diffusion mechanism and indicated to be thermodynamically exothermic in nature.  相似文献   

13.
Adsorption of methylene blue (MB) on agar was investigated as a function of temperature (308-328 K), different concentrations of NaCl and HCl and various weight percentages of binary mixtures of ethanol with water. It was observed that the maximum experimental adsorption capacity, q m, exp, in water is up to 50 mg g-1 and decreases with increase in weight percentage of ethanol and NaCl and HCl concentration compared to that of water. Analysis of data using ARIAN model showed that MB adsorbs as monomer and dimer on the surface of agar. Binding constants of MB to agar were calculated using the Temkin isotherm. The process is exothermic in water and other solutions. The mean adsorption energy (E) value indicated binding of MB to agar is chemical adsorption. Kinetics of this interaction obeys from the pseudo-second-order model and diffusion of the MB molecules into the agar is the main rate-controlling step.  相似文献   

14.
曹群  武世奎  李彦 《无机化学学报》2020,36(7):1233-1240
以橡子为碳源,通过高温煅烧法制备了粒径均匀的磁性空心碳纳米球(MHCNS)。经过HCl浸泡处理可得MHCNS-1,再经HNO_3和NH_3·H_2O处理得MHCNS-2。MHCNS-2粒径均匀,直径为20~40 nm,球壁厚度为3~5 nm。MHCNS-2的尺寸可通过改变镍离子与氢氧化钾的添加量和比例进行调控。通过X射线粉末衍射、扫描电镜、透射电镜、振动样品磁强计等方法对制备的产物进行了表征,进而分析了其生长机制。MHCNS-2对于有机染料亚甲基蓝(MB)的吸附性能的实验结果表明,MHCNS-2具有强吸附性能,当MB溶液浓度为100 mg·L~(-1)时,吸附量可以达到185 mg·g~(-1)。MHCNS对布洛芬的载药释药实验结果表明,MHCNS-2载药率可达44%,释药率达70%,有着良好的载药与释药能力。  相似文献   

15.
基于工业蛭石优异的热膨胀性及阳离子交换性,利用化学-微波法制备高膨胀率膨胀蛭石(HEV),采用对比分析法对亚甲基蓝(MB)的吸附性能进行了研究。结果表明,HEV膨胀率高(膨胀率K=60倍),比表面积大(80 m^2·g^-1),孔径主要分布在2~5 nm之间,仍保持蛭石、水金云母和金云母的物相结构,阳离子交换容量由原样的0.835 mmol·g^-1增加到1.005 mmol·g^-1。HEV对MB的吸附容量受MB初始浓度、吸附时间、溶液pH和吸附温度影响。当MB溶液初始浓度为300 mg·L-1、吸附时间为240 min、溶液pH值为9、吸附温度为298 K时,吸附量为419.87 mg·g^-1,远高于蛭石原矿。吸附过程符合Langmuir模型与准二级动力学模型,为单分子层吸附和吸附势垒较低的自发无序吸热反应过程。HEV具有优异的阳离子交换性和吸附性,是一种具有开发价值的高效低成本吸附剂。  相似文献   

16.
Removing methylene blue (MB) dye from aqueous solutions was examined by the use of nickel molybdate (α-NiMoO4) as an adsorbent produced by an uncomplicated, rapid, and cost-effective method. Different results were produced by varying different parameters such as the pH, the adsorbent dose, the temperature, the contact time, and the initial dye concentration. Adsorbent dose and pH had a major removal effect on MB. Interestingly, a lower amount of adsorbent dose caused greater MB removal. The amount of removal gained was efficient and reached a 99% level with an initial methylene blue solution concentration of ≤160 ppm at pH 11. The kinetic studies indicated that the pseudo-second-order kinetic model relates very well with that of the obtained experimental results. The thermodynamic studies showed that removing the MB dye was favorable, spontaneous, and endothermic. Impressively, the highest quantity of removal amount of MB dye was 16,863 mg/g, as shown by the Langmuir model. The thermal regeneration tests revealed that the efficiency of removing MB (11,608 mg/g) was retained following three continuous rounds of recycled adsorbents. Adsorption of MB onto α-NiMoO4 nanoparticles and its regeneration were confirmed by Fourier transform infrared spectroscopy (FTIR) analysis and scanning electron microscopy (SEM) analysis. The results indicated that α-NiMoO4 nanosorbent is an outstanding and strong candidate that can be used for removing the maximum capacity of MB dye in wastewater.  相似文献   

17.
Polyacrylonitrile (PAN) nanofibers were applied to metal adsorption. PAN nanofibers (prepared by an electrospinning technique) were chemically modified with amidoxime groups, which are suitable for metal adsorption due to their high adsorption affinity for metal ions. The adsorption of the amidoxime-modified PAN (PAN-oxime) (25% conversion) nanofibers followed Langmuir isotherm. The saturation adsorption capacities for Cu(II) and Pb(II) of 52.70 and 263.45 mg/g (0.83 and 1.27 mmol/g), respectively, indicating that the monolayer adsorption occurred on the nanofiber mats. In addition, over 90% of metals were recovered from the metal-loaded PAN-oxime nanofibers in a 1 mol/L HNO3 solution after 1 h.  相似文献   

18.
在利用静电喷射一步法获得壳聚糖(CS)磁性微球(Fe3O4/CS)的基础上,对Fe3O4/CS进行高温炭化和碱活化处理获得活性磁性多孔炭球(A-Fe3O4/C),并对A-Fe3O4/C吸附水中亚甲基蓝(MB)分子的性能进行了研究。在利用扫描电子显微镜、红外吸收光谱仪、比表面分析仪对制备微球的形貌和结构进行分析的基础上,深入研究溶液pH、吸附时间、温度以及活化剂种类等因素对A-Fe3O4/C吸附性能的影响。研究结果表明,A-Fe3O4/C对MB的吸附量随着pH值的增加而增大,且经KOH活化后的A-Fe3O4/C对MB表现出较优的吸附性能。A-Fe3O4/C对MB的吸附过程符合伪二级动力学方程和Langmuir等温线模型,理论最大吸附容量可达300.6 mg·g-1。此外,A-Fe3O4/C表现出良好的重复利用性能,6次循环后对MB的去除率没有明显下降。  相似文献   

19.
在利用静电喷射一步法获得壳聚糖(CS)磁性微球(Fe3O4/CS)的基础上,对Fe3O4/CS进行高温炭化和碱活化处理获得活性磁性多孔炭球(A-Fe3O4/C),并对A-Fe3O4/C吸附水中亚甲基蓝(MB)分子的性能进行了研究。在利用扫描电子显微镜、红外吸收光谱仪、比表面分析仪对制备微球的形貌和结构进行分析的基础上,深入研究溶液pH、吸附时间、温度以及活化剂种类等因素对A-Fe3O4/C吸附性能的影响。研究结果表明,A-Fe3O4/C对MB的吸附量随着pH值的增加而增大,且经KOH活化后的A-Fe3O4/C对MB表现出较优的吸附性能。A-Fe3O4/C对MB的吸附过程符合伪二级动力学方程和Langmuir等温线模型,理论最大吸附容量可达300.6 mg·g-1。此外,A-Fe3O4/C表现出良好的重复利用性能,6次循环后对MB的去除率没有明显下降。  相似文献   

20.
艾伦弘  蒋静  唐娟 《应用化学》2010,27(6):710-715
通过低温回流法制备了具有磁分离响应的活性碳(AC)与CoFe2O4的复合物AC/CoFe2O4(MAC)。采用批式吸附实验法对MAC吸附溶液中偶氮染料亚甲基蓝(MB)的吸附动力学过程及吸附平衡进行了研究,考察了溶液初始pH值对MAC吸附MB的影响。结果表明,MAC吸附MB的过程很快,20 min几乎达到平衡。MAC吸附MB过程可以用准二级动力学方程描述。等温吸附过程服从Langmuir方程,MAC对MB的饱和吸附容量为120.48 mg/g。在较低pH值时,MB吸附量较小。随着pH值的升高,MAC对MB的吸附量增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号