首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A soluble and stable core-modified [38]octaphyrin, MC-T8 , containing eight thiophene rings was synthesized by Yamamoto coupling followed by oxidative dehydrogenation. X-ray crystallographic analysis revealed a nearly planar backbone, and the molecule is globally aromatic with a dominant 38π conjugation pathway. The dication MC-T82+ is antiaromatic, and the backbone is distorted, with a different orientation of the thiophene rings. The tetracation MC-T84+ becomes aromatic again, with a shallow-bowl-shaped geometry. Both the neutral compound and the dication demonstrated open-shell diradical character with a small singlet–triplet energy gap (−2.70 kcal mol−1 for MC-T8 and −3.78 kcal mol−1 for MC-T82+ ), and they are stable owing to effective spin delocalization.  相似文献   

2.
We report the template‐free synthesis and characterization of a new type of porphyrin/quinoidal‐bithiophene‐based conjugated macrocycle. X‐ray crystallographic analysis of the dimer ( 2MC ) revealed a cyclophane‐like geometry with large dihedral angles between the porphyrin and the neighboring thiophene rings, and NMR measurements and theoretical calculations confirmed a localized aromatic character of the porphyrin/thiophene rings and quinoidal character of the bithiophene linkers. Restricted rotation of the thiophene rings linked to the porphyrin unit was observed by variable‐temperature NMR measurements. The dication ( 2MC2+ ) adopts a chair‐shaped conformation to facilitate π‐electron delocalization around the whole macrocycle. As a result, the molecule is globally aromatic, with a dominant 54 π conjugation pathway. The trimer ( 3MC ) also shows localized aromatic character of porphyrin rings and conformational flexibility, but its dication ( 3MC2+ ) is rigid and globally aromatic with a dominant 82 π conjugation pathway.  相似文献   

3.
The synthesis of a planar expanded meso porphyrin with an intramolecular para‐phenylene‐bridged core is reported. The planarity of the octaphyrin macrocycle was confirmed by single‐crystal X‐ray structural analysis, in which the bridged para‐phenylene unit deviated by 27° from the mean macrocyclic plane. Spectroscopic analyses and theoretical calculations suggested that the macrocycle was Hückel aromatic and followed a major [34 π] single‐conjugation pathway, which indicated that the bridging para‐phenylene unit was not involved in the macrocyclic conjugation. Analysis of the photophysical properties of this system by steady‐state absorption/fluorescence spectroscopy and transient absorption spectroscopy revealed moderate enhancement in the parameters of the octaphyrin as compared to its non‐bridged octaphyrin congeners, which was attributed to the planarity and rigidity of the macrocycle as imposed by the bridging para‐phenylene unit. Preliminary anion‐binding studies revealed that the protonated macrocycle bound selectively with chloride ions through N?H???Cl hydrogen‐bonding interactions.  相似文献   

4.
5.
The synthesis of a bithiophene‐bridged 34π conjugated aromatic expanded porphycene 1 and a cyclopentabithiophene bridged 32π conjugated anti‐aromatic expanded porphycene 2 by a McMurry coupling strategy is presented. Magnetic measurements and theoretical calculations reveal that both 1 and 2 exhibit an open‐shell singlet ground state with significant radical character (y0=0.63 for 1 ; y0=0.68, y1=0.18 for 2 ; y0: diradical character, y1: tetraradical character) and a small singlet–triplet energy gap (ΔES‐T=?3.25 kcal mol?1 for 1 and ΔES‐T=?0.92 kcal mol?1 for 2 ). Despite the open‐shell radical character, both compounds display exceptional stability under ambient air and light conditions owing to effective delocalization of unpaired electrons in the extended cyclic π‐conjugation pathway.  相似文献   

6.
A new fused core‐modified 32π heptaphyrin with Möbius aromatic character is reported. The 1H NMR data indicated a weak Möbius aromaticity at 298 K; however, at 213–183 K, the molecule predominates [4n]π Möbius conformation with strong diatropic ring current, which was further confirmed by X‐ray analysis. The protonation experiment led to preservation of the Möbius aromaticity at 298 K. Nevertheless, the experimental results were further supported by theoretical studies. Overall, this study represents the first example of Möbius aromatic fused core‐modified expanded porphyrin.  相似文献   

7.
《化学:亚洲杂志》2017,12(1):6-20
Amongst the various porphyrinoids, octaphyrin has attracted significant attention owing to its diverse syntheses, conformations, and metal‐ligation properties. Octaphyrin is a higher homologue of porphyrin and is formed by linking together heterocycles such as pyrrole, furan, thiophene, and selenophene through α‐α or α‐meso carbon bonds. The planar conformation is mainly achieved through inversion of the heterocyclic units from the center of macrocycle; avoiding meso ‐bridges; introducing a para ‐quinodimethane bridge; employing a neo‐confusion approach; protonation; and by generating dianionic species. In this Focus Review, recent synthetic advancements in the field of octaphyrins are summarized. The twisted conformation of the octaphyrin binds to two metal ions in a tetracoordinate geometry. The diphosphorus complex of octaphyrin represents the first example of a stable expanded isophlorin.  相似文献   

8.
Silicon complexation of a [38]octaphyrin ( 1 ) was accomplished by reaction with an excess amount of MeSiCl3 in the presence of N,N‐diisopropylethylamine, thus giving an aromatic [38]octaphyrin bis(silicon) complex 2 . This complex was interconvertible with an antiaromatic [36]octaphyrin congener ( 3 ) by oxidation with MnO2 and reduction with NaBH4. Curiously, mild oxidation of 2 with ferrocenium hexafluorophosphate afforded a [37]octaphyrin bis(silicon) complex 4 as an stable radical cation that can be stored under ambient conditions in the solid state. Owing to the two NNNCC‐five‐coordinated Si atoms bearing trigonal bipyramidal geometry, these octaphyrin bis(silicon) complexes take on similar and rigid figure‐of‐eight structures with different consecutive numbers of conjugated π‐electrons (38, 37, and 36), and are all stable.  相似文献   

9.
A stable cyclopenta‐fused tetraphenanthrenylene macrocycle, CPTP‐M , was synthesized, and the structure was confirmed by X‐ray crystallographic analysis. It exhibits a large radical character (number of unpaired electron, NU=3.52) and a small singlet–triplet energy gap (ΔES‐T=?2.8 kcal mol?1 by SQUID). Its backbone contains 60 ([4n]) conjugated π electrons and is globally antiaromatic. NMR measurements and theoretical calculations revealed that its dication/dianion is globally aromatic owing to the existence of [4n?2]/[4n+2] π‐conjugated electrons. Remarkably, the ring‐current map of the tetraanion shows a unique ring‐in‐ring structure, with a diamagnetic outer ring and a paramagnetic inner ring. Accordingly, both the inner‐rim and outer‐rim protons are deshielded in its 1H NMR spectrum. The tetraanion can be regarded as an isoelectronic structure of the known octulene, which shows similar electronic properties.  相似文献   

10.
Peri‐acenes are good model compounds for zigzag graphene nanoribbons, but their synthesis is extremely challenging owing to their intrinsic open‐shell diradical character. Now, the successful synthesis and isolation of a stable peri‐tetracene derivative PT‐2ClPh is reported; four 2,6‐dichlorophenyl groups are attached onto the most reactive sites along the zigzag edges. The structure was confirmed by X‐ray crystallographic analysis and its electronic properties were systematically investigated by both experiments and theoretical calculations. It exhibits an open‐shell singlet ground state with a moderate diradical character (y0=51.5 % by calculation) and a small singlet–triplet gap (ΔES‐T=?2.5 kcal mol?1 by SQUID measurement). It displays global aromatic character, which is different from the smaller‐size bisanthene analogue BA‐CF3 .  相似文献   

11.
12.
The synthesis of fused and nonfused core‐modified 40π nonaphyrins are reported. Spectroscopic and X‐ray structural studies reveal a twisted figure‐eight conformation in the freebase form that is nonaromatic. Structural changes occur, from figure‐eight to open extended conformation, upon protonation, thereby adopting 4nπ Hückel antiaromatic character, which is reflected in spectroscopic and theoretical studies. Such a structural change also induces ring inversions of specific heterocyclic rings by 180°.  相似文献   

13.
[52]Dodecaphyrin(1.1.0.1.1.0.1.1.0.1.1.0) was quantitatively oxidized with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ) to the corresponding [50]dodecaphyrin. Further oxidation of [50]dodecaphyrin with MnO2 quantitatively afforded [48]dodecaphyrin. Of the three, [50]dodecaphyrin showed Hückel aromatic character as the largest aromatic molecule reported to date. Protonation of [50]dodecaphyrin with methanesulfonic acid (MSA) led to the formation of a planar tetraprotonated species that displayed a sharp and intense Soret‐like band at 906 nm with ε=6.5×105 M ?1 cm?1 and Q‐band‐like bands at 1346 and 1600 nm.  相似文献   

14.
Ever since the discovery of the trityl radical, isolation of a stable and neutral organic radical has been a synthetic challenge. A (4n+1)π open‐shell configuration is one such possible neutral radical but an unusual state between aromatic (4n+2)π and antiaromatic (4n)π electronic circuits. The synthesis and characterization of an air‐ and water‐stable neutral 25π pentathiophene macrocyclic radical is now described. It undergoes reversible one‐electron oxidation to a 24π antiaromatic cation and reduction to a 26π aromatic anion, thus confirming its amphoteric behavior. Structural determination by single‐crystal X‐ray diffraction studies revealed a planar configuration for the neutral radical, antiaromatic cation, and aromatic anion. In the solution state, the cation shows the highest upfield chemical shift ever observed for a 4nπ system, while the anion adhered to aromatic nature. Computational studies revealed the delocalized nature of the unpaired electron as confirmed by EPR spectroscopy.  相似文献   

15.
16.
Two examples of core‐modified 36π doubly fused octaphyrins that undergo a conformational change from a twisted figure‐eight to an open‐extended structure induced by protonation are reported. Syntheses of the two octaphyrins (in which Ar=mesityl or tolyl) were achieved by a simple acid‐catalyzed condensation of dipyrrane unit containing an electron‐rich, rigid dithienothiophene (DTT) core with pentafluorobenzaldehyde followed by oxidation with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ). The single‐crystal X‐ray structure of the octaphyrin (in which Ar=mesityl) shows a figure‐eight twisted conformation of the expanded porphyrin skeleton with two DTT moieties oriented in a staggered conformation with a π‐cloud distance of 3.7 Å. Spectroscopic and quantum mechanical calculations reveal that both octaphyrins conform to a [4n]π nonaromatic electronic structure. Protonation of the pyrrole nitrogen atoms of the octaphyrins results in dramatic structural change, which led to 1) a large redshift and sharpening of absorption bands in electronic absorption spectrum, 2) a large change in chemical shift of pyrrole β‐CH and ? NH protons in the 1H NMR spectrum, 3) a small increase in singlet lifetimes, and 4) a moderate increase in two‐photon absorption cross‐section values. Furthermore, nucleus‐independent chemical shift (NICS) values calculated at various geometrical positions show positive values and anisotropy‐induced current density (AICD) plots indicate paratropic ring‐currents for the diprotonated form of the octaphyrin (in which Ar=tolyl); the single‐crystal X‐ray structure of the diprotonated form of the octaphyrin shows an extended structure in which one of the pyrrole ring of each dipyrrin subunit undergoes a 180 ° ring‐flip. Four trifluoroacetic acid (TFA) molecules are bound above and below the molecular plane defined by meso‐carbon atoms and are held by N? H ??? O, N? H ??? F, and C? H ??? F intermolecular hydrogen‐bonding interactions. The extended‐open structure upon protonation allows π‐delocalization and the electronic structure conforms to a [4n]π Hückel antiaromatic in the diprotonated state.  相似文献   

17.
Treatment of nonaromatic N‐fused [24]pentaphyrin with trichloromethylsilane in the presence of a base afforded doubly N‐fused [24]pentaphyrin and its silicon complex. Addition of fluoride ion to the silicon complex led to the formation of its fluorosilicate as an unprecedented monoanionic six‐coordinated SiIV complex of porphyrinoid. Treatment of the fluorosilicate with acid led to the recovery of the silicon complex. The doubly N‐fused pentaphyrin, the silicon complex, and the fluorosilicate were all characterized as distinct Möbius aromatic molecules by spectroscopic measurements and X‐ray crystallographic analyses. Importantly, the second N‐fusion reaction, Si‐incorporation and fluoride addition to the Si‐atom enhanced the aromaticity of doubly N‐fused [24]pentaphyrins in this order. Tamao–Fleming oxidation of the silicon complex gave β‐keto doubly N‐fused pentaphyrin and triply fused [24]pentaphyrin, which were nonaromatic and Hückel anti‐aromatic, respectively.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号