首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhancement of the semiconductor–molecule interaction, in particular, promoting the interfacial charge transfer process (ICTP), is key to improving the sensitivity of semiconductor‐based surface enhanced Raman scattering (SERS). Herein, by developing amorphous ZnO nanocages (a‐ZnO NCs), we successfully obtained an ultrahigh enhancement factor of up to 6.62×105. This remarkable SERS sensitivity can be attributed to high‐efficiency ICTP within a‐ZnO NC molecule system, which is caused by metastable electronic states of a‐ZnO NCs. First‐principles density functional theory (DFT) simulations further confirmed a stronger ICTP in a‐ZnO NCs than in their crystalline counterparts. The efficient ICTP can even generate π bonding in Zn−S bonds peculiar to the mercapto molecule adsorbed a‐ZnO NCs, which has been verified through the X‐ray absorption near‐edge structure (XANES) characterization. To the best of our knowledge, this is the first time such remarkable SERS activity has been observed within amorphous semiconductor nanomaterials, which could open a new frontier for developing highly sensitive and stable SERS technology.  相似文献   

2.
无机纳米材料的合成是纳米科学发展的前提和基础之一。区别于传统的高温湿化学合成法,光化学方法在无机纳米材料的合成中表现出许多优点,并在近年来受到了广泛关注。本文分三个部分综述了近年来光化学方法在无机纳米材料合成中的应用,具体包括贵金属纳米材料的光化学合成与负载,半导体纳米材料的光化学合成以及表面等离子体共振诱导的各向异性金属纳米晶合成。最后,在总结光化学方法在无机纳米材料合成中体现出的优势及目前研究仍存在不足的基础上,我们对其未来可能的发展方向进行了展望。  相似文献   

3.
In this review, we reported our recent studies on controlled growth of sulfide and oxide semiconductor nano-and micro-structures via gamma-irradiation route. NiS and PbS uniform hollow microspheres (∼500 nm) have been successfully synthesized by γ-irradiating PMMA-CS2-ethanol aqueous solution that contains Ni2+ or Pb2+ at room temperature, respectively. Large-scale single-crystalline ZnO hexangular prisms were successfully prepared through a simple γ-irradiation approach at room temperature and under ambient pressure. CdSe hollow structures and hollow nanospheres (40∼50 nm), compass-shaped (80 nm in middle width and 200 nm in length) Mn3O4 (hausmannite) and monodisperse ZnS nanoballs etc. had been successfully synthesized through γ-irradiation route with different surfactant-assisted systems at room temperature. Those successful synthesis approaches in large scale and under mild conditions could be of interest for both applications and fundamental studies.  相似文献   

4.
杜娟  卢瑛  王祎龙  郭桂萍  潘迎捷 《化学进展》2014,26(12):2019-2026
具有非对称结构的纳米材料显示出独特的物理和化学性质,在生物传感、靶向药物运载以及分子检测等生物医学领域具有良好的应用前景.本文就非对称纳米材料的性质及其应用方面的最新研究进展进行了综述.首先,我们从三个不同方面讨论了非对称纳米材料的性质及相关应用,即表面双亲性、催化特性和生物相容性;然后着重强调了非对称纳米材料在生物医学上的应用,如生物传感、靶向运载、基因疫苗以及杀菌剂;最后,我们对非对称纳米材料在制备技术的改进及其在食品安全领域的应用作出了展望.  相似文献   

5.
Cancer represents one of the main causes of human death in developed countries. Most current therapies, unfortunately, carry a number of side effects, such as toxicity and damage to healthy cells, as well as the risk of resistance and recurrence. Therefore, cancer research is trying to develop therapeutic procedures with minimal negative consequences. The use of nanomaterial‐based systems appears to be one of them. In recent years, great progress has been made in the field using nanomaterials with high potential in biomedical applications. Carbon nanomaterials, thanks to their unique physicochemical properties, are gaining more and more popularity in cancer therapy. They are valued especially for their ability to deliver drugs or small therapeutic molecules to these cells. Through surface functionalization, they can specifically target tumor tissues, increasing the therapeutic potential and significantly reducing the adverse effects of therapy. Their potential future use could, therefore, be as vehicles for drug delivery. This review presents the latest findings of research studies using carbon nanomaterials in the treatment of various types of cancer. To carry out this study, different databases such as Web of Science, PubMed, MEDLINE and Google Scholar were employed. The findings of research studies chosen from more than 2000 viewed scientific publications from the last 15 years were compared.  相似文献   

6.
Polymerase Chain Reaction (PCR) is one of the most common technologies used to produce millions of copies of targeted nucleic acid in vitro and has become an indispensable technique in molecular biology. However, it suffers from low efficiency and specificity problems, false positive results, and so on. Although many conditions can be optimized to increase PCR yield, such as the magnesium ion concentration, the DNA polymerases, the number of cycles, and so on, they are not all-purpose and the optimization can be case dependent. Nano-sized materials offer a possible solution to improve both the quality and productivity of PCR. In the last two decades, nanoparticles (NPs) have attracted significant attention and gradually penetrated the field of life sciences because of their unique chemical and physical properties, such as their large surface area and small size effect, which have greatly promoted developments in life science and technology. Additionally, PCR technology assisted by NPs (NanoPCR) such as gold NPs (Au NPs), quantum dots (QDs), and carbon nanotubes (CNTs), etc., have been developed to significantly improve the specificity, efficiency, and sensitivity of PCR and to accelerate the PCR reaction process. This review discusses the roles of different types of NPs used to enhance PCR and summarizes their possible mechanisms.  相似文献   

7.
采用溶胶-凝胶原位复合的方法制备了聚乙烯醇/羟基磷灰石生物活性复合水凝胶,探讨了HA含量对复合水凝胶结构性能的影响,用X射线衍射分析、红外光谱分析、DSC、扫描电镜等方法对HA在PVA水凝胶体系中的晶态结构及分散状态进行了表征,并与物理共混复合法进行了比较.研究发现,采用溶胶-凝胶法原位复合可在PVA水凝胶中形成具有生物活性的HA结晶结构,且分散良好,分布均匀.HA粉体作为异相成核剂,促进了PVA水凝胶基体的结晶,提高了复合水凝胶的力学性能.  相似文献   

8.
Surface-enhanced Raman scattering(SERS)-active gold nanoparticles(AuNPs) films were prepared with a one-step electrochemical method. The orthogonal design was used to investigate the experimental conditions influencing the morphologies and the SERS activity of the AuNPs. A condition was found to obtain the optimal SERS activity. The SEM study reveals that the AuNPs films were composed of closely packed AuNPs. The Finite Difference Time Domain(FDTD) simulation result indicates that the coupling between particles plays an important role in the enhancement SERS of AuNPs.  相似文献   

9.
Gold nanoparticles were assembled on gold substrates with the self-assembled monolayer(SAM) of p-minothiophenol(PATP). AFM measurements disclose that gold nanoparticles are scattered over the surface of the substrate with a submonolayer coverage. The Raman signal of the coupling layer, the SAM of PATP, can be well observed. Potential-dependent measurements were performed to study the chemical enhancement in SERS of such a system. Based on the supposition that the direction of charge transfer is from gold nanoparticles to PATP, it is deduced that Herzberg-Teller contribution has ruled in the SERS of such a system.  相似文献   

10.
Experimental results obtained in different laboratories world‐wide by researchers using surface‐enhanced Raman scattering (SERS) can differ significantly. We, an international team of scientists with long‐standing expertise in SERS, address this issue from our perspective by presenting considerations on reliable and quantitative SERS. The central idea of this joint effort is to highlight key parameters and pitfalls that are often encountered in the literature. To that end, we provide here a series of recommendations on: a) the characterization of solid and colloidal SERS substrates by correlative electron and optical microscopy and spectroscopy, b) on the determination of the SERS enhancement factor (EF), including suitable Raman reporter/probe molecules, and finally on c) good analytical practice. We hope that both newcomers and specialists will benefit from these recommendations to increase the inter‐laboratory comparability of experimental SERS results and further establish SERS as an analytical tool.  相似文献   

11.
金纳米粒子组装体系SERS化学增强的研究   总被引:1,自引:0,他引:1  
  相似文献   

12.
Paper-based analytical devices (PADs), including lateral flow assays (LFAs), dipstick assays and microfluidic PADs (μPADs), have a great impact on the healthcare realm and environmental monitoring. This is especially evident in developing countries because PADs-based point-of-care testing (POCT) enables to rapidly determine various (bio)chemical analytes in a miniaturized, cost-effective and user-friendly manner. Low sensitivity and poor specificity are the main bottlenecks associated with PADs, which limit the entry of PADs into the real-life applications. The application of nanomaterials in PADs is showing great improvement in their detection performance in terms of sensitivity, selectivity and accuracy since the nanomaterials have unique physicochemical properties. In this review, the research progress on the nanomaterial-based PADs is summarized by highlighting representative recent publications. We mainly focus on the detection principles, the sensing mechanisms of how they work and applications in disease diagnosis, environmental monitoring and food safety management. In addition, the limitations and challenges associated with the development of nanomaterial-based PADs are discussed, and further directions in this research field are proposed.  相似文献   

13.
Group 6 transition metal dichalcogenides (TMDs), such as MoS2 and WS2 have been extensively studied for various applications while few studies have delved into other TMDs such as platinum dichalcogenides. In this work, layered crystalline and amorphous platinum disulfide (PtS2) were synthesized, characterised and their fundamental electrochemical properties were investigated. Both materials exhibited inherent oxidation and reduction reactions which would limit their operating potential window for sensing applications. Amorphous phase materials are considered to be promising electrocatalysts due to the porous, and nanostructured morphology with high concentration of unsaturated active sites. The electrocatalytic performances towards oxygen reduction (ORR) and hydrogen evolution reactions (HER) of crystalline and amorphous PtS2 were analysed. Amorphous PtS2 was found to exhibit superior electrocatalytic performances towards ORR and HER as compared to crystalline PtS2. For HER, amorphous and crystalline PtS2 have overpotential values of 0.30 V and 0.70 V (vs. RHE) at current density of 10 mA cm−2, respectively. The influence of electrochemical reduction pre-treatment on their catalytic behaviours was also investigated. Electrochemical reduction pre-treatment on both crystalline and amorphous PtS2 removed the oxidized sulfate groups and increased the proportion of Pt0 oxidation state which exposed more catalytic sites. As such, these materials were activated and displayed improved ORR and HER performances. Electrochemically reduced amorphous PtS2 outperformed the untreated counterparts and exhibited the best HER performance with overpotential of 0.17 V (vs. RHE) at current density of −10 mA cm−2. These findings provide insights into the electrochemical properties of noble metal PtS2 in both crystalline and amorphous states which can be activated by electrochemical reduction pre-treatment.  相似文献   

14.
Good-quality surface enhanced Raman spectra have been obtained from various roughened Pt electrodes using a confocal Raman measuring system. A new equation is presented to estimate the enhancement factor G for the electrodispersed and platinized Pt electrodes in a pyridine+NaClO4 solution. It is shown that the platinum electrodes undergoing the special roughening procedures exhibit a weak SERS effect with an enhancement factor of 10 to 1.2×102, depending on the surface pretreament.  相似文献   

15.
金核银壳纳米粒子薄膜的制备及SERS活性研究   总被引:5,自引:0,他引:5  
采用柠檬酸化学还原法制备金溶胶, 通过自组装技术在石英片表面制备金纳米粒子薄膜, 在银增强剂混合溶液中反应获得金核银壳纳米粒子薄膜. 用紫外-可见吸收光谱仪和原子力显微镜(AFM)研究了不同条件下制备的金核银壳纳米粒子薄膜的光谱特性和表面形貌, 并以结晶紫为探针分子测量了金核银壳纳米粒子薄膜的表面增强拉曼光谱(SERS). 结果表明, 金纳米粒子薄膜的分布、银增强剂反应时间的长短对金核银壳纳米粒子薄膜的形成均有重要影响. 制备过程中, 可以通过控制反应条件获得一定粒径的、具有良好表面增强拉曼散射活性的金核银壳纳米粒子薄膜.  相似文献   

16.
Amorphous MoO3−x nanosheets were fabricated by the room-temperature oxidation of molybdenum powder with H2O2, followed by light-irradiation reduction in methanol. When applied as a substrate for surface-enhanced Raman spectroscopy (SERS), these nanosheets exhibit higher sensitivity than the crystalline counterpart for a wide range of analytes. Moreover, the SERS activity remains stable on repeated oxygen insertion/extraction. In contrast, the performance of crystalline MoO3−x continuously deteriorates on successive redox treatments. This unique SERS activity allows the recycling of the substrate through an H2O2-based Fenton-like reaction. More importantly, the non-invasive SERS was unprecedentedly used for the self-diagnosis of amorphous MoO3−x as a more selective photocatalyst than its crystalline counterpart.  相似文献   

17.
通过自组装方法以对巯基苯胺(PATP)为偶联分子, 在石英基片上构筑了多种形貌的银钠米粒子单层结构和三明治结构. 研究了组装膜在不同激发线下表面增强拉曼散射(SERS)的增强差异. 研究结果表明, 单层基底和三明治基底中偶联分子的SERS信号因银纳米粒子间的电磁场耦合而显著增强, 且在三明治结构中增强更加明显. 对复合SERS基底增强因子进行计算可知, 复合SERS基底的表面等离子体共振(SPR)峰与激发线的匹配程度越好, 其增强因子越大. 在三明治结构中更易发生PATP分子转变为对巯基偶氮苯(DMAB)分子的激光诱导催化偶联反应. 另外, 该激光诱导催化偶联反应与激发波长密切相关.  相似文献   

18.
A simple scheme, with special terms and symbols useful in categorizing various nanostructures, is introduced. Using “n-D in/on m-D” composite nanomaterials where n,m ≤ 2 as examples, we illustrate how these terms and symbols can be used to represent various hetero nanostructures. This simple nomenclature system also allows a systematization of a wide variety of multi-dimensional nanocomposite heterostructures.  相似文献   

19.
In this paper, the gas-sensing properties of copper oxide porous nanosheets in amorphous and highly crystalline states were comparatively investigated on the premise of almost the same specific surface area, morphology and size. Unexpectedly, the results show that amorphous copper oxide porous nanosheets have much better gas sensing properties than highly crystalline copper oxide to a serious of volatile organic compounds, and the lowest detection limit (LOD) of the amorphous copper oxide porous nanosheets to methanal is even up to 10 ppb. By contrast, the LOD of the highly crystalline copper oxide porous nanosheets to methanal is 95 ppb. Experiments prove that the oxygen vacancies contained in the amorphous copper oxide porous nanosheets play a key role in improving gas sensitivity, which greatly improve the chemical activity of the materials, especially for the adsorption of molecules containing oxygen-groups such as methanal and oxygen.  相似文献   

20.
The practical implementation of lithium–sulfur batteries is obstructed by poor conductivity, sluggish redox kinetics, the shuttle effect, large volume variation, and low areal loading of sulfur electrodes. Now, amorphous N-doped carbon/MoS3 (NC/MoS3) nanoboxes with hollow porous architectures have been meticulously designed as an advanced sulfur host. Benefiting from the enhanced conductivity by the N-doped carbon, reduced shuttle effect by the strong chemical interaction between unsaturated Mo and lithium polysulfides, improved redox reaction kinetics by the catalytic effect of MoS3, great tolerance of volume variation and high sulfur loading arising from flexible amorphous materials with hollow-porous structures, the amorphous NC/MoS3 nanoboxes enabled sulfur electrodes to deliver a high areal capacity with superior rate capacity and decent cycling stability. The synthetic strategy can be generalized to fabricate other amorphous metal sulfide nanoboxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号