首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of enantiomerically enriched α‐hydroxy amides and β‐amino alcohols has been accomplished by enantioselective reduction of α‐keto amides with hydrosilanes. A series of α‐keto amides were reduced in the presence of chiral CuII/(S)‐DTBM‐SEGPHOS catalyst to give the corresponding optically active α‐hydroxy amides with excellent enantioselectivities by using (EtO)3SiH as a reducing agent. Furthermore, a one‐pot complete reduction of both ketone and amide groups of α‐keto amides has been achieved using the same chiral copper catalyst followed by tetra‐n‐butylammonium fluoride (TBAF) catalyst in presence of (EtO)3SiH to afford the corresponding chiral β‐amino alcohol derivatives.  相似文献   

2.
This review describes our recent works on the diastereo‐ and enantioselective synthesis of anti‐β‐hydroxy‐α‐amino acid esters using transition‐metal–chiral‐bisphosphine catalysts. A variety of transition metals, namely ruthenium (Ru), rhodium (Rh),iridium (Ir), and nickel (Ni), in combination with chiral bisphosphines, worked well as catalysts for the direct anti‐selective asymmetric hydrogenation of α‐amino‐β‐keto ester hydrochlorides, yielding anti‐β‐hydroxy‐α‐amino acid esters via dynamic kinetic resolution (DKR) in excellent yields and diastereo‐ and enantioselectivities. The Ru‐catalyzed asymmetric hydrogenation of α‐amino‐β‐ketoesters via DKR is the first example of generating anti‐β‐hydroxy‐α‐amino acids. Complexes of iridium and axially chiral bisphosphines catalyze an efficient asymmetric hydrogenation of α‐amino‐β‐keto ester hydrochlorides via dynamic kinetic resolution. A homogeneous Ni–chiral‐bisphosphine complex also catalyzes an efficient asymmetric hydrogenation of α‐amino‐β‐keto ester hydrochlorides in an anti‐selective manner. As a related process, the asymmetric hydrogenation of the configurationally stable substituted α‐aminoketones using a Ni catalyst via DKR is also described.  相似文献   

3.
The development and further evolution of the first catalytic asymmetric conjugate additions of azlactones as activated amino acid derivatives to enones is described. Whereas the first‐generation approach started from isolated azlactones, in the second‐generation approach the azlactones could be generated in situ starting from racemic N‐benzoylated amino acids. The third evolution stage could make use of racemic unprotected α‐amino acids to directly form highly enantioenriched and diastereomerically pure masked quaternary amino acid products bearing an additional tertiary stereocenter. The step‐economic transformations were accomplished by cooperative activation by using a robust planar chiral bis‐Pd catalyst, a Brønsted acid (HOAc or BzOH; Ac=acetyl, Bz=benzoyl), and a Brønsted base (NaOAc). In particular the second‐ and third‐generation approaches provide a rapid and divergent access to biologically interesting unnatural quaternary amino acid derivatives from inexpensive bulk chemicals. In that way highly enantioenriched acyclic α‐amino acids, α‐alkyl proline, and α‐alkyl pyroglutamic acid derivatives could be prepared in diastereomerically pure form. In addition, a unique way is presented to prepare diastereomerically pure bicyclic dipeptides in just two steps from unprotected tertiary α‐amino acids.  相似文献   

4.
5.
An efficient ligand design strategy towards boosting asymmetric induction was proposed, which simply employed inorganic nanosheets to modify α‐amino acids and has been demonstrated to be effective in vanadium‐catalyzed epoxidation of allylic alcohols. Here, the strategy was first extended to zinc‐catalyzed asymmetric aldol reaction, a versatile bottom‐up route to make complex functional compounds. Zinc, the second‐most abundant transition metal in humans, is an environment‐friendly catalytic center. The strategy was then further proved valid for organocatalyzed metal‐free asymmetric catalysis, that is, α‐amino acid catalyzed asymmetric aldol reaction. Visible improvement of enantioselectivity was experimentally achieved irrespective of whether the nanosheet‐attached α‐amino acids were applied as chiral ligands together with catalytic ZnII centers or as chiral catalysts alone. The layered double hydroxide nanosheet was clearly found by theoretical calculations to boost ee through both steric and H‐bonding effects; this resembles the role of a huge and rigid substituent.  相似文献   

6.
The first catalytic enantioselective aminolysis of trans‐2,3‐epoxy alcohols has been accomplished. This stereospecific ring‐opening process was efficiently promoted by a tungsten/bis(hydroxamic acid) catalytic system, furnishing various anti‐3‐amino‐1,2‐diols with excellent regiocontrol and high enantioselectivities (up to 95 % ee). Moreover, virtually enantiopure 3‐amino‐1,2‐diols could be obtained by the sequential combination of two reactions that both involve the use of a chiral catalyst.  相似文献   

7.
A new catalytic system has been developed for the asymmetric hydrogenation of β‐secondary‐amino ketones using a highly efficient P‐chiral bisphosphine–rhodium complex in combination with ZnCl2 as the activator of the catalyst. The chiral γ‐secondary‐amino alcohols were obtained in 90–94 % yields, 90–99 % enantioselectivities, and with high turnover numbers (up to 2000 S/C; S/C=substrate/catalyst ratio). A mechanism for the promoting effect of ZnCl2 on the catalytic system has been proposed on the basis of NMR spectroscopy and HRMS studies. This method was successfully applied to the asymmetric syntheses of three important drugs, (S)‐duloxetine, (R)‐fluoxetine, and (R)‐atomoxetine, in high yields and with excellent enantioselectivities.  相似文献   

8.
Rhodium/DuanPhos‐catalyzed asymmetric hydrogenation of aliphatic α‐dehydroamino ketones has been achieved and afforded chiral α‐amino ketones in high yields and excellent enantioselectives (up to 99 % ee), which could be reduced further to chiral β‐amino alcohols by LiAlH(tBuO)3 with good yields. This protocol provides a readily accessible route for the synthesis of chiral α‐amino ketones and chiral β‐amino alcohols.  相似文献   

9.
Fully stereodivergent dual‐catalytic α‐allylation of protected α‐amino‐ and α‐hydroxyacetaldehydes is achieved through iridium‐ and amine‐catalyzed substitution of racemic allylic alcohols with chiral enamines generated in situ. The operationally simple method furnishes useful aldehyde building blocks in good yields, more than 99 % ee, and with d.r. values greater than 20:1 in some cases. Additionally, the γ,δ‐unsaturated products can be further functionalized in a stereodivergent fashion with high selectivity and with preservation of stereochemical integrity at the Cα position.  相似文献   

10.
A novel chiral 1,5‐N,N‐bidentate ligand based on a spirocyclic pyrrolidine oxazoline backbone was designed and prepared, and it coordinates CuBr in situ to form an unprecedented catalyst that enables efficient oxidative cross‐coupling of 2‐naphthols. Air serves as an external oxidant and generates a series of C1‐symmetric chiral BINOL derivatives with high enantioselectivity (up to 99 % ee) and good yield (up to 87 %). This approach is tolerant of a broader substrates scope, particularly substrates bearing various 3‐ and 3′‐substituents. A preliminary investigation using one of the obtained C1‐symmetric BINOL products was used as an organocatalyst, exhibiting better enantioselectivity than the previously reported organocatalyst, for the asymmetric α‐alkylation of amino esters.  相似文献   

11.
An enantioselective C(sp3)?C(sp3) cross‐coupling of racemic α‐silylated alkyl iodides and alkylzinc reagents is reported. The reaction is catalyzed by NiCl2/(S,S)‐Bn‐Pybox and yields α‐chiral silanes with high enantiocontrol. The catalyst system does not promote the cross‐coupling of the corresponding carbon analogue, corroborating the stabilizing effect of the silyl group on the alkyl radical intermediate (α‐silicon effect). Both coupling partners can be, but do not need to be, functionalized, and hence, even α‐chiral silanes with no functional group in direct proximity of the asymmetrically substituted carbon atom become accessible. This distinguishes the new method from established approaches for the synthesis of α‐chiral silanes.  相似文献   

12.
1,2‐Bisphosphines have been identified as one class of important and powerful chiral ligands in asymmetric catalysis with transition metals. Herein, a copper(I)‐catalyzed asymmetric hydrophosphination of α,β‐unsaturated phosphine sulfides was developed with the assistance of “soft–soft” interaction between copper(I)‐catalyst and the phosphine sulfide moiety, which afforded 1,2‐bisphosphine derivatives with diversified electronic nature and steric hindrance in high to excellent yields with high to excellent enantioselectivity. Moreover, the challenging catalytic asymmetric hydrophosphination/protonation reaction was achieved with excellent enantioselectivity. Strikingly, the dynamic kinetic resolution of racemic diarylphosphines was also successfully carried out with high to excellent diastereo‐ and enantioselectivities. Interestingly, the nucleophilic copper(I)‐diphenylphosphide species was characterized by 31P NMR spectrum and mass spectrum. At last, three products were transformed to chiral 1,2‐bisphosphines, which were employed as ligands in Rh‐catalyzed asymmetric hydrogenation of α‐amino‐α,β‐unsaturated ester. The α‐amino acid derivative was produced in high enantioselectivity, which demonstrated the utility of the present methodology.  相似文献   

13.
Unprecedented organocatalyzed asymmetric cascade reactions have been developed for the facile synthesis of chiral spirooxindole‐based isotetronic acids and 5‐1H‐pyrrol‐2‐ones.The asymmetric 1,2‐addition reactions of α‐ketoesters to isatins and imines by using an acid–base bifunctional 6′‐OH cinchona alkaloid catalyst, followed by cyclization and enolization of the resulting adducts, gave chiral spiroisotetronic acids and 5‐1H‐pyrrol‐2‐ones, respectively, in excellent optical purities (up to 98 % ee). FT‐IR analysis supported the existence of hydrogen‐bonding interaction between the 6′‐OH group of the cinchona catalyst and an isatin carbonyl group, an interaction that might be crucial for catalyst activity and stereocontrol.  相似文献   

14.
The first highly enantioselective, diastereoselective, and regioselective [2,3]‐rearrangement of iodonium ylides has been developed as a general solution to catalytic onium ylide rearrangements. In the presence of a chiral copper catalyst, substituted allylic iodides couple with α‐diazoesters to generate metal‐coordinated iodonium ylides, which undergo [2,3]‐rearrangements with high selectivities (up to >95:5 r.r., up to >95:5 d.r., and up to 97 % ee ). The enantioenriched iodoester products can be converted stereospecifically into a variety of onium ylide rearrangement products, as well as compounds that are not accessible by classical onium ylide rearrangements.  相似文献   

15.
A highly enantioselective three‐component hydroacyloxylation/1,4‐conjugate addition of ortho‐hydroxybenzyl alcohols, ynamides and carboxylic acids was developed under mild reaction conditions in the presence of a chiral N,N′‐dioxide/Sc(OTf)3 complex, which went through in situ generated ortho‐quinone methides with α‐acyloxyenamides, delivering a range of corresponding chiral α‐acyloxyenamides derivatives containing gem(1,1)‐diaryl skeletons in moderate to good yields with excellent ee values. The scale‐up experiment and further derivation showed the practicality of this catalytic system. In addition, a possible catalytic cycle and transition state model was proposed to elucidate the origin of the stereoselectivity based on X‐ray crystal structure of the α‐acyloxyenamide intermediate and product.  相似文献   

16.
The synthesis of α‐aminosilanes by a highly enantio‐ and regioselective copper‐catalyzed hydroamination of vinylsilanes is reported. The system employs Cu‐DTBM‐SEGPHOS as the catalyst, diethoxymethylsilane as the stoichiometric reductant, and O‐benzoylhydroxylamines as the electrophilic nitrogen source. This hydroamination reaction is compatible with differentially substituted vinylsilanes, thus providing access to amino acid mimics and other valuable chiral organosilicon compounds.  相似文献   

17.
The first chiral catalyst for the three‐component Ugi reaction was identified as a result of a screen of a large set of different BOROX catalysts. The BOROX catalysts were assembled in situ from a chiral biaryl ligand, an amine, water, BH3?SMe2 , and an alcohol or phenol. The catalyst screen included 13 different ligands, 12 amines, and 47 alcohols or phenols. The optimal catalyst system (LAP 8‐5‐47) provided α‐amino amides from an aldehyde, a secondary amine, and an isonitrile with excellent asymmetric induction. The catalytically active species is proposed to be an ion pair that consists of the chiral boroxinate anion and an iminium cation.  相似文献   

18.
A new catalytic asymmetric tandem α‐alkenyl addition/proton shift reaction of silyl enol ethers with ketimines was serendipitously discovered in the presence of chiral N,N′‐dioxide/ZnII complexes. The proton shift preferentially proceeded instead of a silyl shift after α‐alkenyl addition of silyl enol ether to the ketimine. A wide range of β‐amino silyl enol ethers were synthesized in high yields with good to excellent ee values. Control experiments suggest that the Mukaiyama–Mannich reaction and tandem α‐alkenyl addition/proton shift reaction are competitive reactions in the current catalytic system. The obtained β‐amino silyl enol ethers were easily transformed into β‐fluoroamines containing two vicinal tetrasubstituted carbon centers.  相似文献   

19.
Although phase‐transfer‐catalyzed asymmetric SNAr reactions provide unique contribution to the catalytic asymmetric α‐arylations of carbonyl compounds to produce biologically active α‐aryl carbonyl compounds, the electrophiles were limited to arenes bearing strong electron‐withdrawing groups, such as a nitro group. To overcome this limitation, we examined the asymmetric SNAr reactions of α‐amino acid derivatives with arene chromium complexes derived from fluoroarenes, including those containing electron‐donating substituents. The arylation was efficiently promoted by binaphthyl‐modified chiral phase‐transfer catalysts to give the corresponding α,α‐disubstituted α‐amino acids containing various aromatic substituents with high enantioselectivities.  相似文献   

20.
We report a dual function asymmetric catalysis by a chiral phosphoric acid catalyst that controls both enantioselective addition of an achiral α‐vinyl allylboronate to aldehydes and pseudo‐axial orientation of the α‐vinyl group in the transition state. The reaction produces dienyl homoallylic alcohols with high Z‐selectivities and enantioselectivities. Computational studies revealed that minimization of steric interactions between the alkyl groups of the diol on boron and the chiral phosphoric acid catalyst influence the orientation of α‐vinyl substituent of the allylboronate reagent to occupy a pseudo‐axial position in the transition state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号