首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
The need for the development of transparent conductive electrodes (TCEs) supported on flexible polymer substrates has explosively increased in response to flexible polymer‐based photovoltaic and display technologies; these TCEs replace conventional indium tin oxide (ITO) that exhibits poor performance on heat‐sensitive polymers. An efficient, flexible TCE is required to exhibit high electrical conductance and high optical transmittance, as well as excellent mechanical flexibility and long‐term stability, simultaneously. Recent advances in technologies utilizing an ultrathin noble‐metal film in a dielectric/metal/dielectric structure, or its derivatives, have attracted attention as promising alternatives that can satisfy the requirements of flexible TCEs. This review will survey the background knowledge and recent updates of synthetic strategies and design rules toward highly efficient, flexible TCEs based on ultrathin metal films, with a special focus on the principal features and available methodologies involved in the fabrication of highly transparent, conductive, ultrathin noble‐metal films. This survey will also cover the practical applications of TCEs to flexible organic solar cells and light‐emitting diodes.  相似文献   

2.
Highly conductive and transparent poly‐(3,4‐ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) films, incorporating a fluorosurfactant as an additive, have been prepared for stretchable and transparent electrodes. The fluorosurfactant‐treated PEDOT:PSS films show a 35% improvement in sheet resistance (Rs) compared to untreated films. In addition, the fluorosurfactant renders PEDOT:PSS solutions amenable for deposition on hydrophobic surfaces, including pre‐deposited, annealed films of PEDOT:PSS (enabling the deposition of thick, highly conductive, multilayer films) and stretchable poly(dimethylsiloxane) (PDMS) substrates (enabling stretchable electronics). Four‐layer PEDOT:PSS films have an Rs of 46 Ω per square with 82% transmittance (at 550 nm). These films, deposited on a pre‐strained PDMS substrate and buckled, are shown to be reversibly stretchable, with no change to Rs, during the course of over 5000 cycles of 0 to 10% strain. Using the multilayer PEDOT:PSS films as anodes, indium tin oxide (ITO)‐free organic photovoltaics are prepared and shown to have power conversion efficiencies comparable to that of devices with ITO as the anode. These results show that these highly conductive PEDOT:PSS films can not only be used as transparent electrodes in novel devices (where ITO cannot be used), such as stretchable OPVs, but also have the potential to replace ITO in conventional devices.  相似文献   

3.
In this study, a dielectric layer/metal/dielectric layer (multilayer) electrode is proposed as both anode and cathode for use in the fabrication of transparent and flexible organic light‐emitting diodes (TFOLEDs). The structure of multilayer electrodes is optimized by systematic experiments and optical calculations considering the transmittance and efficiency of the device. The details of the multilayer electrode structure are [ZnS (24 nm)/Ag (7 nm)/MoO3 (5 nm)] and [ZnS (3 nm)/Cs2CO3 (1 nm)/Ag (8 nm)/ZnS (22 nm)], as anode and cathode, respectively. The optimized TFOLED design is fabricated on a polyethylene terephthalate (PET) substrate, and the device shows high transmittance (74.22% around 550 nm) although the PET substrate has lower transmittance than glass. The TFOLEDs operate normally under compressive stress; degradation of electrical characteristics is not observed, comparable to conventional OLEDs with ITO and Al as electrodes. In addition, because the fabricated TFOLEDs show a nearly Lambertian emission pattern and a negligible shift of Commission International de l'Eclairage (CIE) coordination, it is concluded that the fabricated TFOLEDs are suitable for use in displays.  相似文献   

4.
5.
Improving the lifetime and the operational and thermal stability of organic thin‐film materials while maintaining high conductivity and mechanical flexibility is critical for flexible electronics applications. Here, it is reported that highly conductive and environmentally stable organic transparent electrodes (TEs) can be fabricated by mechanically laminating poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) films containing dimethylsulfoxide and Zonyl fluorosurfactant (PDZ films) with a monolayer graphene barrier. The proposed lamination process allows graphene to be coated onto the PDZ films uniformly and conformally with tight interfacial binding, free of wrinkles and air gaps. The laminated films exhibit an outstanding room‐temperature hole mobility of ≈85.1 cm2 V?1 s?1 since the graphene can serve as an effective bypass for charge carriers. The significantly improved stability of the graphene‐laminated TEs against high mechanical/thermal stress, humidity, and ultraviolet irradiation is particularly promising. Furthermore, the incorporation of the graphene barrier increases the expected lifetime of the TEs by more than two orders of magnitude.  相似文献   

6.
The successful deposition of conductive transparent TiNx/TiO2 hybrid films on both polycarbonate and silicon substrates from a titanium ethoxide precursor is demonstrated in air using atmospheric plasma processing equipped with a high‐temperature precursor delivery system. The hybrid film chemical composition, deposition rates, optical and electrical properties along with the adhesion energy to the polycarbonate substrate are investigated as a function of plasma power and plasma gas composition. The film is a hybrid of amorphous and crystalline rutile titanium oxide phases and amorphous titanium nitride that depend on the processing conditions. The visible transmittance increases from 71% to 83% with decreasing plasma power and increasing nitrogen content of the plasma gas. The film resistivity is in the range of ~8.5 × 101 to 2.4 × 105 ohm cm. The adhesion energy to the polycarbonate substrate varies from ~1.2 to 8.5 J/m2 with increasing plasma power and decreasing plasma gas nitrogen content. Finally, annealing the film or introducing hydrogen to the primary plasma gas significantly affects the composition and decreases thin‐film resistivity.  相似文献   

7.
Flexible, transparent, conductive electrodes are key elements of emerging flexible electronic and energy devices. Such electrodes should form an intimate physical contact with various active components of flexible devices to ensure stable, low‐resistant electrical contacts. However, contact formation techniques are based largely on conventional soldering, conductive pastes, mechanical clamping, and thin film deposition. These generally result in damaged, contaminated, bulky, and uncontrollable contact interfaces. A self‐attachable, flexible, transparent, and conductive electrode that is based on a distinctive design of regular grid patterns into which bioinspired adhesive architectures and percolating Ag nanowires are integrated is proposed. Based on this integrated design, the proposed electrode forms reliable, low‐resistant electrical contacts; strong mechanical adhesive contacts; and ultra‐clean, damage‐free contact interfaces with active device components by attaching onto the components without using additional conductive pastes, mechanical pressing, or vacuum deposition processes. The contact interfaces of the electrode and device components remain stable even when the electrode is extremely bent. Moreover, specific electronic circuits can be generated on the electrode surface by a selective deposition of Ag nanowires. This enables simple interconnections of diverse electronic components on its surface.  相似文献   

8.
Flexible transparent supercapacitors (FTSs) have aroused considerable attention. Nonetheless, balancing energy storage capability and transparency remains challenging. Herein, a new type of FTSs with both excellent energy storage and superior transparency is developed based on PEDOT:PSS/MXene/Ag grid ternary hybrid electrodes. The hybrid electrodes can synergistically utilize the high optoelectronic properties of Ag grids, the excellent capacitive performance of MXenes, and the superior chemical stability of PEDOT:PSS, thus, simultaneously demonstrating excellent optoelectronic properties (T: ≈89%, Rs: ≈39 Ω sq−1), high areal specific capacitance, superior mechanical softness, and excellent anti-oxidation capability. Due to the excellent comprehensive performances of the hybrid electrodes, the resulting FTSs exhibit both high optical transparency (≈71% and ≈60%) and large areal specific capacitance (≈3.7 and ≈12 mF cm−2) besides superior energy storage capacity (P: 200.93, E: 0.24 µWh cm−2). Notably, the FTSs show not only excellent energy storage but also exceptional sensing capability, viable for human activity recognition. This is the first time to achieve FTSs that combine high transparency, excellent energy storage and good sensing all-in-one, which make them stand out from conventional flexible supercapacitors and promising for next-generation smart flexible energy storage devices.  相似文献   

9.
The advent of special types of transparent electrodes, known as “ultrathin metal electrodes,” opens a new avenue for flexible and printable electronics based on their excellent optical transparency in the visible range while maintaining their intrinsic high electrical conductivity and mechanical flexibility. In this new electrode architecture, introducing metal nucleation inducers (MNIs) on flexible plastic substrates is a key concept to form high‐quality ultrathin metal films (thickness ≈ 10 nm) with smooth and continuous morphology. Herein, this paper explores the role of “polymeric” MNIs in fabricating ultrathin metal films by employing various polymers with different surface energies and functional groups. Moreover, a scalable approach is demonstrated using the ionic self‐assembly on typical plastic substrates, yielding large‐area electrodes (21 × 29.7 cm2) with high optical transmittance (>95%), low sheet resistance (<10 Ω sq?1), and extreme mechanical flexibility. The results demonstrate that this new class of flexible and transparent electrodes enables the fabrication of efficient polymer light‐emitting diodes.  相似文献   

10.
A novel inorganic–organic heterojunction (TiO2/P3HT (poly(3‐hexylthiophene)) is easily prepared by a combination of anodization and vacuumed dip‐coating methods, and the constructed flexible fibrous photodetector (FPD) exhibits high‐performance self‐powered UV–visible broadband photoresponse with fast speed, high responsivity, and good stability, as well as highly stable performance at bending states, showing great potential for wearable electronic devices. Moreover, Au nanoparticles are deposited to further boost the responsivity and selectivity by regulating the sputtering intervals. The optimal Au/TiO2/P3HT FPD yields an ≈700% responsivity enhancement at 0 V under 350 nm illumination. The sharp cut‐off edge and high UV–visible rejection ratio (≈17 times higher) indicate a self‐powered flexible UV photodetector. This work provides an effective and versatile route to modulate the photoelectric performance of flexible electronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号