首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoparticles of the spin-crossover coordination polymer [FeL(bipy)]n were synthesized by confined crystallization within the core of polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) diblock copolymer micelles. The 4VP units in the micellar core act as coordination sites for the Fe complex. In the bulk material, the spin-crossover nanoparticles in the core are well isolated from each other allowing thermal treatment without disintegration of their structure. During annealing above the glass transition temperature of the PS block, the transition temperature is shifted gradually to higher temperatures from the as-synthesized product (T1/2↓=163 K and T1/2↑=170 K) to the annealed product (T1/2↓=203 K and T1/2↑=217 K) along with an increase in hysteresis width from 6 K to 14 K. Thus, the spin-crossover properties can be shifted towards the properties of the related bulk material. The stability of the nanocomposite allows further processing, such as electrospinning from solution.  相似文献   

2.
Two new isostructural iron(II) spin‐crossover (SCO) framework (SCOF) materials of the type [Fe(dpms)2(NCX)2] (dpms=4,4′‐dipyridylmethyl sulfide; X=S ( SCOF‐6(S) ), X=Se ( SCOF‐6(Se) )) have been synthesized. The 2D framework materials consist of undulating and interpenetrated rhomboid (4,4) nets. SCOF‐6(S) displays an incomplete SCO transition with only approximately 30 % conversion of high‐spin (HS) to low‐spin iron(II) sites over the temperature range 300–4 K (T1/2=75 K). In contrast, the NCSe? analogue, SCOF‐6(Se) , displays a complete SCO transition (T1/2=135 K). Photomagnetic characterizations reveal quantitative light‐ induced excited spin‐state trapping (LIESST) of metastable HS iron(II) sites at 10 K. The temperature at which the photoinduced stored information is erased is 58 and 50 K for SCOF‐6(S) and SCOF‐6(Se) , respectively. Variable‐pressure magnetic measurements were performed on SCOF‐6(S) , revealing that with increasing pressure both the T1/2 value and the extent of spin conversion are increased; with pressures exceeding 5.2 kbar a complete thermal transition is achieved. This study confirms that kinetic trapping effects are responsible for hindering a complete thermally induced spin transition in SCOF‐6(S) at ambient pressure due to an interplay between close T1/2 and T(LIESST) values.  相似文献   

3.
A thermochromic 1D spin crossover coordination (SCO) polymer [Fe(βAlatrz)3](BF4)2 ? 2 H2O ( 1? 2 H2O), whose precursor βAlatrz, (1,2,4‐triazol‐4‐yl‐propionate) has been tailored from a β‐amino acid ester is investigated in detail by a set of superconducting quantum interference device (SQUID), 57Fe Mössbauer, differential scanning calorimetry, infrared, and Raman measurements. An hysteretic abrupt two‐step spin crossover (T1/2=230 K and T1/2=235 K, and T1/2=172 K and T1/2=188 K, respectively) is registered for the first time for a 1,2,4‐triazole‐based FeII 1D coordination polymer. The two‐step SCO configuration is observed in a 1:2 ratio of low‐spin/high‐spin in the intermediate phase for a 1D chain. The origin of the stepwise transition was attributed to a distribution of chains of different lengths in 1? 2 H2O after First Order Reversal Curves (FORC) analyses. A detailed DFT analysis allowed us to propose the normal mode assignment of the Raman peaks in the low‐spin and high‐spin states of 1? 2 H2O. Vibrational spectra of 1? 2 H2O reveal that the BF4? anions and water molecules play no significant role on the vibrational properties of the [Fe(βAlatrz)3]2+ polymeric chains, although non‐coordinated water molecules have a dramatic influence on the emergence of a step in the spin transition curve. The dehydrated material [Fe(βAlatrz)3](BF4)2 ( 1 ) reveals indeed a significantly different magnetic behavior with a one‐step SCO which was also investigated.  相似文献   

4.
The reaction of [FeL(MeOH)2] (L being a tetradentate [N2O2]2? coordinating Schiff base like ligand [([3,3′]‐[1,2‐phenylenebis(iminomethylidyne)]bis(2,4‐pentane‐dionato)(2‐)N,N′,O2,O2′], MeOH = methanol) with 4,4′‐bipyridine (bipy) results in the formation of a new iron(II ) spin crossover coordination polymer of the formula [FeL(bipy)] ( 1 ). T‐dependent susceptibility measurements revealed an abrupt HS ? LS spin transition with an approximately 18 K‐wide thermal hysteresis loop (T1/2 = 237 K and T1/2 = 219 K). The isolation of crystals suitable for X‐ray structure analysis allowed the determination of the motive of the molecule structure of the first 1‐D chain compound with hysteresis in the HS form at 250 K. Despite the low qualtity of the data, we were able to obtain some insight into the interplay of covalent and elastic interactions that are both responsible for the high cooperative interactions during the spin transition in this compound.  相似文献   

5.
Three iron(II) complexes, [Fe(TPMA)(BIM)](ClO4)2?0.5H2O ( 1 ), [Fe(TPMA)(XBIM)](ClO4)2 ( 2 ), and [Fe(TPMA)(XBBIM)](ClO4)2 ?0.75CH3OH ( 3 ), were prepared by reactions of FeII perchlorate and the corresponding ligands (TPMA=tris(2‐pyridylmethyl)amine, BIM=2,2′‐biimidazole, XBIM=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐biimidazole, XBBIM=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐bibenzimidazole). The compounds were investigated by a combination of X‐ray crystallography, magnetic and photomagnetic measurements, and Mössbauer and optical absorption spectroscopy. Complex 1 exhibits a gradual spin crossover (SCO) with T1/2=190 K, whereas 2 exhibits an abrupt SCO with approximately 7 K thermal hysteresis (T1/2=196 K on cooling and 203 K on heating). Complex 3 is in the high‐spin state in the 2–300 K range. The difference in the magnetic behavior was traced to differences between the inter‐ and intramolecular interactions in 1 and 2 . The crystal packing of 2 features a hierarchy of intermolecular interactions that result in increased cooperativity and abruptness of the spin transition. In 3 , steric repulsion between H atoms of one of the pyridyl substituents of TPMA and one of the benzene rings of XBBIM results in a strong distortion of the FeII coordination environment, which stabilizes the high‐spin state of the complex. Both 1 and 2 exhibit a photoinduced low‐spin to high‐spin transition (LIESST effect) at 5 K. The difference in the character of intermolecular interactions of 1 and 2 also manifests in the kinetics of the decay of the photoinduced high‐spin state. For 1 , the decay rate constant follows the single‐exponential law, whereas for 2 it is a stretched exponential, reflecting the hierarchical nature of intermolecular contacts. The structural parameters of the photoinduced high‐spin state at 50 K are similar to those determined for the high‐spin state at 295 K. This study shows that N‐alkylation of BIM has a negligible effect on the ligand field strength. Therefore, the combination of TPMA and BIM offers a promising ligand platform for the design of functionalized SCO complexes.  相似文献   

6.
The synthesis, structure, and magnetic properties of three clathrate derivatives of the spin‐crossover porous coordination polymer {Fe(pyrazine)[Pt(CN)4]} ( 1 ) with five‐membered aromatic molecules furan, pyrrole, and thiophene is reported. The three derivatives have a cooperative spin‐crossover transition with hysteresis loops 14–29 K wide and average critical temperatures Tc=201 K ( 1?fur ), 167 K ( 1?pyr ), and 114.6 K ( 1?thio ) well below that of the parent compound 1 (Tc=295 K), confirming stabilization of the HS state. The transition is complete and takes place in two steps for 1?fur , while 1?pyr and 1?thio show 50 % spin transition. For 1?fur the transformation between the HS and IS (middle of the plateau) phases occurs concomitantly with a crystallographic phase transition between the tetragonal space groups P4/mmm and I4/mmm, respectively. The latter space group is retained in the subsequent transformation involving the IS and the LS phases. 1?pyr and 1?thio display the tetragonal P4/mmm and orthorhombic Fmmm space groups, respectively, in both HS and IM phases. Periodic calculations using density functional methods for 1?fur , 1?pyr , 1?thio , and previously reported derivatives 1?CS2 , 1?I, 1?bz (benzene), and 1?pz (pyrazine) have been carried out to investigate the electronic structure and nature of the host–guest interactions as well as their relationship with the changes in the LS–HS transition temperatures of 1?Guest . Geometry‐optimized lattice parameters and bond distances in the empty host 1 and 1?Guest clathrates are in general agreement with the X‐ray diffraction data. The concordance between the theoretical results and the experimental data also comprises the guest molecule orientation inside the host and intermolecular distances. Furthermore, a general correlation between experimental Tc and calculated LS–HS electronic energy gap was observed. Finally, specific host–guest interactions were studied through interaction energy calculations and crystal orbital displacement (COD) curve analysis.  相似文献   

7.
The tetrapyridyl ligand bbpya (bbpya=N,N‐bis(2,2′‐bipyrid‐6‐yl)amine) and its mononuclear coordination compound [Fe(bbpya)(NCS)2] ( 1 ) were prepared. According to magnetic susceptibility, differential scanning calorimetry fitted to Sorai’s domain model, and powder X‐ray diffraction measurements, 1 is low‐spin at room temperature, and it exhibits spin crossover (SCO) at an exceptionally high transition temperature of T1/2=418 K. Although the SCO of compound 1 spans a temperature range of more than 150 K, it is characterized by a wide (21 K) and dissymmetric hysteresis cycle, which suggests cooperativity. The crystal structure of the LS phase of compound 1 shows strong N?H???S intermolecular H‐bonding interactions that explain, at least in part, the cooperative SCO behavior observed for complex 1 . DFT and CASPT2 calculations under vacuum demonstrate that the bbpya ligand generates a stronger ligand field around the iron(II) core than its analogue bapbpy (N,N′‐di(pyrid‐2‐yl)‐2,2′‐bipyridine‐6,6′‐diamine); this stabilizes the LS state and destabilizes the HS state in 1 compared with [Fe(bapbpy)(NCS)2] ( 2 ). Periodic DFT calculations suggest that crystal‐packing effects are significant for compound 2 , in which they destabilize the HS state by about 1500 cm?1. The much lower transition temperature found for the SCO of 2 compared to 1 appears to be due to the combined effects of the different ligand field strengths and crystal packing.  相似文献   

8.
A comprehensive study of the magnetic and photomagnetic behaviors of cis‐[Fe(picen)(NCS)2] (picen=N,N′‐bis(2‐pyridylmethyl)1,2‐ethanediamine) was carried out. The spin‐equilibration was extremely slow in the vicinity of the thermal spin‐transition. When the cooling speed was slower than 0.1 K min?1, this complex was characterized by an abrupt thermal spin‐transition at about 70 K. Measurement of the kinetics in the range 60–70 K was performed to approach the quasi‐static hysteresis loop. At low temperatures, the metastable HS state was quenched by a rapid freezing process and the critical T(TIESST) temperature, which was associated with the thermally induced excited spin‐state‐trapping (TIESST) effect, was measured. At 10 K, this complex also exhibited the well‐known light‐induced excited spin‐state‐trapping (LIESST) effect and the T(LIESST) temperature was determined. The kinetics of the metastable HS states, which were generated from the freezing effect and from the light‐induced excitation, was studied. Single‐crystal X‐ray diffraction as a function of speed‐cooling and light conditions at 30 K revealed the mechanism of the spin‐crossover in this complex as well as some direct relationships between its structural properties and its spin state. This spin‐crossover (SCO) material represents a fascinating example in which the metastability of the HS state is in close vicinity to the thermal spin‐transition region. Moreover, it is a beautiful example of a complex in which the metastable HS states can be generated, and then compared, either by the freezing effect or by the LIESST effect.  相似文献   

9.
A dinuclear CoII complex, [Co2(tphz)(tpy)2]n+ (n=4, 3 or 2; tphz: tetrapyridophenazine; tpy: terpyridine), has been assembled using the redox‐active and strongly complexing tphz bridging ligand. The magnetic properties of this complex can be tuned from spin‐crossover with T1/2≈470 K for the pristine compound (n=4) to single‐molecule magnet with an ST=5/2 spin ground state when once reduced (n=3) to finally a diamagnetic species when twice reduced (n=2). The two successive and reversible reductions are concomitant with an increase of the spin delocalization within the complex, promoting remarkably large magnetic exchange couplings and high‐spin species even at room temperature.  相似文献   

10.
A dinuclear CoII complex, [Co2(tphz)(tpy)2]n+ (n=4, 3 or 2; tphz: tetrapyridophenazine; tpy: terpyridine), has been assembled using the redox‐active and strongly complexing tphz bridging ligand. The magnetic properties of this complex can be tuned from spin‐crossover with T1/2≈470 K for the pristine compound (n=4) to single‐molecule magnet with an ST=5/2 spin ground state when once reduced (n=3) to finally a diamagnetic species when twice reduced (n=2). The two successive and reversible reductions are concomitant with an increase of the spin delocalization within the complex, promoting remarkably large magnetic exchange couplings and high‐spin species even at room temperature.  相似文献   

11.
Polymeric one‐dimensional (1D) triazole‐based FeII spin crossover nanoparticles have been entrapped in pluronic P123 matrix, forming nanorods in which the interaction between host (P123) and guest (FeII complex) promoted high reproducibility of the spin crossover process, significant shifts of the transition temperatures (T↑=370 K, T↓=338 K for the P123 entrapped material vs the literature values of T↑=358 K, T↓=341 K for the neat/polymer free system) and larger magnetic hysteresis width.  相似文献   

12.
We used neutron reflectivity to measure the interfacial width in the immiscible system polystyrene/poly(n‐butyl methacrylate) (PS/PnBMA). Measurements were made on the same samples at temperatures ranging from below the glass‐transition temperature (Tg) of PS to slightly above. We observed significant broadening of the interface at temperatures below the Tg of PS, indicating chain mobility below the bulk Tg value. The interfacial width exhibited a plateau at a value of 20 Å in the temperature range of 365 K < T < 377 K. A control experiment involving hydrogenated and deuterated PS films (hPS/dPS) showed no such broadening over the same temperature region. The results are consistent with a reduction of the Tg of PS in the interfacial region of ~20 K. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2664–2670, 2001  相似文献   

13.
The self‐assembly of iron(II) ions with rare octacyanidorhenate(V) metalloligands in a methanolic solution results in the formation of a nanometric pentadecanuclear {FeII9[ReV(CN)8]6(MeOH)24}?10 MeOH ( 1 ) molecule with a six‐capped body‐centered cubic topology. The cluster demonstrates a thermally‐induced spin‐crossover phase transition at T1/2=195 K which occurs selectively for a single FeII ion embedded in the center of a cluster core.  相似文献   

14.
The reaction of Fe(NCS)3 prepared in situ in MeOH with 5‐X‐SalEen ligands (5‐X‐SalEen=condensation product of 5‐substituted salicylaldehyde and N‐ethylethylenediamine) provided three Fe(III) complexes, [Fe(5‐X‐SalEen)2]NCS; X=Me ( 1 ), X=Br ( 2 ), X=OMe ( 3 ). All the complexes reveal similar structural features but a very different magnetic profile. Complex 1 shows a gradual spin crossover while complexes 2 and 3 show a sharp spin transition. The T1/2 for complex 2 is 237 K while for complex 3 it is much higher with a value of 361 K. The spin transition temperature is shifted towards higher temperature with increasing electron‐donation ability of the ligand substituents. This experimental observation has been rationalized with DFT calculations. UV‐Vis and cyclic voltammetry studies support the fact that the electron density on the ligand increases from Me to Br to OMe substituents. To understand the change in spin states, temperature‐dependent EPR spectra have been recorded. The spin state equilibrium in the liquid state has been probed with Evans NMR spectroscopic method, and thermodynamic parameters have been evaluated for all complexes.  相似文献   

15.
The reaction of 4‐(1,2,4‐triazol‐4‐yl)ethanesulfonate ( L ) with Zn2+, Cu2+, Ni2+, Co2+, and Fe2+ gave a series of analogous neutral trinuclear complexes with the formula [M3(μ‐ L )6(H2O)6] ( 1 – 5 ). These compounds were characterized by single‐crystal X‐ray diffraction, thermogravimetry, and elemental analysis. The magnetic properties of compounds 2 – 5 were studied. Complexes 2 – 4 show weak antiferromagnetic superexchange, with J values of ?0.33 ( 2 ), ?9.56 ( 3 ), and ?4.50 cm?1 ( 4 ) (exchange Hamiltonian H=?2 J (S1S2+S2S3)). Compound 5 shows two additional crystallographic phases ( 5 b and 5 c ) that can be obtained by dehydration and/or thermal treatment. These three phases exhibit distinct magnetic behavior. The Fe2+ centers in 5 are in high‐spin (HS) configuration at room temperature, with the central one exhibiting a non‐cooperative gradual spin transition below 250 K with T1/2=150 K. In 5 b , the central Fe2+ stays in its low‐spin (LS) state at room temperature, and cooperative spin transition occurs at higher temperatures and with the appearance of memory effect (T1/2↑=357 K and T1/2↓=343 K). In the case of 5 c , all iron centers remain in their HS configuration down to very low temperatures, with weak antiferromagnetic coupling (J=?1.16 cm?1). Compound 5 b exhibits spin transition with memory effect at the highest temperature reported, which matches the remarkable features of coordination polymers.  相似文献   

16.
A new synthesis of (8‐quinolyl)‐5‐methoxysalicylaldimine (Hqsal‐5‐OMe) is reported and its crystal structure is presented. Two FeIII complexes, [Fe(qsal‐5‐OMe)2]Cl ? solvent (solvent=2 MeOH ? 0.5 H2O ( 1 ) and MeCN ? H2O ( 2 )) have been prepared and their structural, electronic and magnetic properties studied. [Fe(qsal‐5‐OMe)2] Cl ? 2 MeOH ? 0.5 H2O ( 1 ) exhibits rare crystallographically independent high‐spin and low‐spin FeIII centres at 150 K, whereas [Fe(qsal‐5‐OMe)2]Cl ? MeCN ? H2O ( 2 ) is low spin at 100 K. In both structures there are extensive π–π and C? H???π interactions. SQUID magnetometry of 2 reveals an unusual abrupt stepped‐spin crossover with T1/2=245 K and 275 K for steps 1 and 2, respectively, with a slight hysteresis of 5 K in the first step and a plateau of 15 K between the steps. In contrast, 1 is found to undergo an abrupt half‐spin crossover also with a hysteresis of 10 K. The two compounds are the first FeIII complexes of a substituted qsal ligand to exhibit abrupt spin crossover. These conclusions are supported by 57Fe Mössbauer spectroscopy. Both complexes exhibit reversible reduction to FeII at ?0.18 V and irreversible oxidation of the coordinated qsal‐5‐OMe ligand at +1.10 V.  相似文献   

17.
The effects of confinement on glass transition temperature (Tg) and physical aging are measured in polystyrene (PS), poly(methyl methacrylate) (PMMA), and poly(2-vinyl pyridine) (P2VP) nanocomposites containing 10- to 15-nm-diameter silica nanospheres or 47-nm-diameter alumina nanospheres. Nanocomposites are made by spin coating films from sonicated solutions of polymer, nanofiller, and dye. The Tgs and physical aging rates are measured by fluorescence of trace levels of dye in the films. At 0.1–10 vol % nanofiller, Tg values can be enhanced or depressed relative to neat, bulk Tg (Tg,bulk) or invariant with nanofiller content. For alumina nanocomposites, Tg increases relative to Tg,bulk by as much as 16 K in P2VP, decreases by as much as 5 K in PMMA, and is invariant in PS. By analogy with thin polymer films, these results are explained by wetted P2VP–nanofiller interfaces with attractive interactions, nonwetted PMMA–nanofiller interfaces (free space at the interface), and wetted PS–nanofiller interfaces lacking attractive interactions, respectively. The presence of wetted or nonwetted interfaces is controlled by choice of solvent. For example, 0.1–0.6 vol % silica/PMMA nanocomposites exhibit Tg enhancements as large as 5 K or Tg reductions as large as 17 K relative to Tg,bulk when films are made from methyl ethyl ketone or acetic acid solutions, respectively. A factor of 17 reduction of physical aging rate relative to that of neat, bulk P2VP is demonstrated in a 4 vol % alumina/P2VP nanocomposite. This suggests that a strategy for achieving nonequilibrium, glassy polymeric systems that are stable or nearly stable to physical aging is to incorporate well-dispersed nanoparticles possessing attractive interfacial interactions with the polymer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2935–2943, 2006  相似文献   

18.
Domain wall motion is detected for the first time during the transition to a ferroelastic and spin state ordered phase of a spin crossover complex. Single‐crystal X‐ray diffraction and resonant ultrasound spectroscopy (RUS) revealed two distinct symmetry‐breaking phase transitions in the mononuclear Mn3+ compound [Mn(3,5‐diBr‐sal2(323))]BPh4, 1. The first at 250 K, involves the space group change CcPc and is thermodynamically continuous, while the second, PcP1 at 85 K, is discontinuous and related to spin crossover and spin state ordering. Stress‐induced domain wall mobility was interpreted on the basis of a steep increase in acoustic loss immediately below the the PcP1 transition  相似文献   

19.
The abrupt high spin (HS)→low spin (LS) transition (T1/2=136 K) in [Fe(hbtz)2(CH3CN)2](BF4)2 (hbtz=1,6-di(tetrazol-2-yl)hexane) is finished at 100 K and further thermal treatment influences the spin crossover. Subsequent heating involves a change of the spin state in the same way (T1/2=136 K) on cooling. In contrast, cooling below 100 K triggers different behavior and T1/2 is shifted to 170 K. The extraordinary structural changes that occurred below 100 K are responsible for the observed diversity of properties. A unique feature of the low-temperature phase is the rebuilding of the anion network expressed by a shift of anions inside the polymeric layer at a distance of 1.2 Å as well as the relative shift of neighboring layers at over 4 Å. These structural alterations, connected with a phase transition, become the origin of the strain, which in most cases causes crystal cleaving. In a sample composed from crystals crushed as a result of the phase transition or as a result of mechanical crumbling, the hysteresis loop vanishes; however, annealing the sample allows to its partial restoration. A replacement of acetonitrile by other nitriles leads to preservation of the polymeric structure and spin crossover, but no phase transition follows.  相似文献   

20.
Electronic transfer protein cytochrome c‐550 from horse heart is studied in the unfolded state by means of paramagnetic 1H NMR. The protein contains 104 aminoacid residues and a heme group with low spin FeIII ion in the oxidized form of protein. The global secondary structure is of the α‐helix type as occurs in the case of very other cytochromes c investigated such as cyt c‐550 from Thiobacillus versutus or cyt c‐551 from Pseudomonas aeruginosa. We have studied the coordination characteristic and electronic properties of heme iron horse heart ferricytochrome c‐550 at increasing denaturing conditions (up to 3.1 M GuHCl and 288‐323 K). The 1H T1 values of the signals were measured and some resonance assignments made based on EXSY experiments. The electronic structure of the iron(III) is discussed on the basis of the temperature dependence of the isotropic shifts and relaxation times. These results show that it is produced a change of spin, from low‐spin iron(III) (2T2, S=1/2) in the folded state to high‐spin iron(III) (6A1, S=5/2) in the unfolded state. It seems to be possible that in the opened structure the ferricyt c‐550 loses one axial ligand (His/‐) appearing the spin transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号