首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An organic crystal of 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (pCBP) exhibits time-dependent afterglow color from blue to orange over 1 s. Both experimental and computational data confirm that the color evolution results from well-separated, long-persistent thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) with different but comparable decay rates. TADF is enabled by a small S1–T1 energy gap of 0.7 kcal mol−1. The good separation of TADF and RTP is due to a 11.8 kcal mol−1 difference in the S0 energies of the S1 and T1 structures, indicating that apart from the excited-state properties, tuning the ground state is also important for luminescence properties. This afterglow color evolution of pCBP allows its applications in anticounterfeiting and data encryption with high security levels.  相似文献   

2.
Treatment of the salt [PPh4]+[Cp*W(S)3]? ( 6 ) with allyl bromide gave the neutral complex [Cp*W(S)2S‐CH2‐CH?CH2] ( 7 ). The product 7 was characterized by an X‐ray crystal structure analysis. Complex 7 features dynamic NMR spectra that indicate a rapid allyl automerization process. From the analysis of the temperature‐dependent NMR spectra a Gibbs activation energy of ΔG (278 K)≈13.7±0.1 kcal mol?1 was obtained [ΔH≈10.4±0.1 kcal mol?1; ΔS≈?11.4 cal mol?1 K?1]. The DFT calculation identified an energetically unfavorable four‐membered transition state of the “forbidden” reaction and a favorable six‐membered transition state of the “Cope‐type” allyl rearrangement process at this transition‐metal complex core.  相似文献   

3.
The synthesis of a bithiophene‐bridged 34π conjugated aromatic expanded porphycene 1 and a cyclopentabithiophene bridged 32π conjugated anti‐aromatic expanded porphycene 2 by a McMurry coupling strategy is presented. Magnetic measurements and theoretical calculations reveal that both 1 and 2 exhibit an open‐shell singlet ground state with significant radical character (y0=0.63 for 1 ; y0=0.68, y1=0.18 for 2 ; y0: diradical character, y1: tetraradical character) and a small singlet–triplet energy gap (ΔES‐T=?3.25 kcal mol?1 for 1 and ΔES‐T=?0.92 kcal mol?1 for 2 ). Despite the open‐shell radical character, both compounds display exceptional stability under ambient air and light conditions owing to effective delocalization of unpaired electrons in the extended cyclic π‐conjugation pathway.  相似文献   

4.
To get information about the reactivity profile of the donor‐stabilized guanidinatosilicon(II) complexes 2 and 3 , a series of oxidative addition reactions was studied. Treatment of 2 and 3 with S8, Se, or Te afforded the respective four‐coordinate silicon(IV ) complexes 8 – 10 and 12 – 14 , which contain an SiN3El skeleton (El=S, Se, Te) with an Si?El double bond. Treatment of 2 with N2O yielded the dinuclear four‐coordinate silicon(IV) complex 11 with an SiN3O skeleton and a central four‐membered Si2O2 ring. Compounds 8 – 14 exist both in the solid state and in solution. They were characterized by elemental analyses, NMR spectroscopic studies in the solid state and in solution, and crystal structure analyses. The reactivity profile of 2 was compared with that of the structurally related bis[N,N′‐diisopropylbenzamidinato(?)]silicon(II) ( 1 ), which is three‐coordinate in the solid state and four‐coordinate in solution ( 1′ ). In contrast, as shown by state‐of‐the‐art relativistic DFT analyses and experimental studies, silylene 2 is three‐coordinate both in the solid state and solution. The three‐coordinate species 2 is 9.3 kcal mol?1 more stable in benzene than the four‐coordinate isomer 2′ . The reason for this was studied by bonding analyses of 2 and 2′ , which were compared with those of 1 and 1′ . The gas‐phase proton affinities of the relevant species in solution ( 1 ′ and 2 ) amount to 288.8 and 273.8 kcal mol?1, respectively.  相似文献   

5.
In this study, we theoretically investigated the mechanism underlying the high‐valent mono‐oxo‐rhenium(V) hydride Re(O)HCl2(PPh3)2 ( 1 ) catalyzed hydrosilylation of C?N functionalities. Our results suggest that an ionic SN2‐Si outer‐sphere pathway involving the heterolytic cleavage of the Si?H bond competes with the hydride pathway involving the C?N bond inserted into the Re?H bond for the rhenium hydride ( 1 ) catalyzed hydrosilylation of the less steric C?N functionalities (phenylmethanimine, PhCH=NH, and N‐phenylbenzylideneimine, PhCH=NPh). The rate‐determining free‐energy barriers for the ionic outer‐sphere pathway are calculated to be ~28.1 and 27.6 kcal mol?1, respectively. These values are slightly more favorable than those obtained for the hydride pathway (by ~1–3 kcal mol?1), whereas for the large steric C?N functionality of N,1,1‐tri(phenyl)methanimine (PhCPh=NPh), the ionic outer‐sphere pathway (33.1 kcal mol?1) is more favorable than the hydride pathway by as much as 11.5 kcal mol?1. Along the ionic outer‐sphere pathway, neither the multiply bonded oxo ligand nor the inherent hydride moiety participate in the activation of the Si?H bond.  相似文献   

6.
The dynamic behavior of the N,N,N′,N′‐tetramethylethylenediamine (tmeda) ligand has been studied in solid lithium‐fluorenide(tmeda) ( 3 ) and lithium‐benzo[b]fluorenide(tmeda) ( 4 ) using CP/MAS solid‐state 13C‐ and 15N‐NMR spectroscopy. It is shown that, in the ground state, the tmeda ligand is oriented parallel to the long molecular axis of the fluorenide and benzo[b]fluorenide systems. At low temperature (<250 K), the 13C‐NMR spectrum exhibits two MeN signals. A dynamic process, assigned to a 180° rotation of the five‐membered metallacycle (π‐flip), leads at elevated temperatures to coalescence of these signals. Line‐shape calculations yield ΔH?=42.7 kJ mol?1, ΔS?=?5.3 J mol?1 K?1, and =44.3 kJ mol?1 for 3 , and ΔH?=36.8 kJ mol?1, ΔS?=?17.7 J mol?1 K?1, and =42.1 kJ mol?1 for 4 , respectively. A second dynamic process, assigned to ring inversion of the tmeda ligand, was detected from the temperature dependence of T1ρ, the 13C spin‐lattice relaxation time in the rotating frame, and led to ΔH?=24.8 kJ mol?1, ΔS?=?49.2 J mol?1 K?1, and =39.5 kJ mol?1 for 3 , and ΔH?=18.2 kJ mol?1, ΔS?=?65.3 J mol?1 K?1, and =37.7 kJ mol?1 for 4 , respectively. For (D12)‐ 3 , the rotation of the CD3 groups has also been studied, and a barrier Ea of 14.1 kJ mol?1 was found.  相似文献   

7.
In this work, a density function theory (DFT) study is presented for the HNS/HSN isomerization assisted by 1–4 water molecules on the singlet state potential energy surface (PES). Two modes are considered to model the catalytic effect of these water molecules: (i) water molecule(s) participate directly in forming a proton transfer loop with HNS/HSN species, and (ii) water molecules are out of loop (referred to as out‐of‐loop waters) to assist the proton transfer. In the first mode, for the monohydration mechanism, the heat of reaction is 21.55 kcal · mol?1 at the B3LYP/6‐311++G** level. The corresponding forward/backward barrier lowerings are obtained as 24.41/24.32 kcal · mol?1 compared with the no‐water‐assisting isomerization barrier T (65.52/43.87 kcal · mol?1). But when adding one water molecule on the HNS, there is another special proton‐transfer isomerization pathway with a transition state 10T′ in which the water is out of the proton transfer loop. The corresponding forward/backward barriers are 65.89/65.89 kcal · mol?1. Clearly, this process is more difficult to follow than the R–T–P process. For the two‐water‐assisting mechanism, the heat of reaction is 19.61 kcal · mol?1, and the forward/backward barriers are 32.27/12.66 kcal · mol?1, decreased by 33.25/31.21 kcal · mol?1 compared with T. For trihydration and tetrahydration, the forward/backward barriers decrease as 32.00/12.60 (30T) and 37.38/17.26 (40T) kcal · mol?1, and the heat of reaction decreases by 19.39 and 19.23 kcal · mol?1, compared with T, respectively. But, when four water molecules are involved in the reactant loop, the corresponding energy aspects increase compared with those of the trihydration. The forward/backward barriers are increased by 5.38 and 4.66 kcal · mol?1 than the trihydration situation. In the second mode, the outer‐sphere water effect from the other water molecules directly H‐bonded to the loop is considered. When one to three water molecules attach to the looped water in one‐water in‐loop‐assisting proton transfer isomerization, their effects on the three energies are small, and the deviations are not more than 3 kcal · mol?1 compared with the original monohydration‐assisting case. When adding one or two water molecules on the dihydration‐assisting mechanism, and increasing one water molecule on the trihydration, the corresponding energies also are not obviously changed. The results indicate that the forward/backward barriers for the three in‐loop water‐assisting case are the lowest, and the surrounding water molecules (out‐of‐loop) yield only a small effect. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

8.
Variable‐temperature NMR and ESR spectroscopic studies reveal that bis(dibenzo[a,i]fluorenylidene) 1 possesses a singlet ground state, 1 (S0), while the 90° twisted triplet 1 (T1) is populated to a small extent already at room temperature. Analysis of the increasing amount of paramagnetic 1 (T1) at temperatures between 300 and 500 K yields the exchange interaction Jex/h c=3351 cm?1 and a singlet–triplet energy splitting of 9.6 kcal mol?1, which is in excellent agreement with calculations (9.3 kcal mol?1 at the UKS BP86/B3LYP/revPBE level of theory). In contrast, the zero‐field splitting parameter D is very small (calculated value ?0.018 cm?1) and unmeasurable.  相似文献   

9.
Although the two polymorphic modifications, (I) and (II), of the title compound, C13H10N2O, crystallize in the same space group (P21/c), their asymmetric units have Z′ values of 1 and 2, respectively. These are conformational polymorphs, since the mol­ecules in phases (I) and (II) adopt different rotations of the phenyl ring with respect the central 2‐cyano­carboxy­amino­prop‐2‐enyl fragment. Calculations of crystal packing using Cerius2 [Molecular Simulations (1999). 9685 Scranton Road, San Diego, CA 92121, USA] have shown that (I) is more stable than (II), by 1.3 kcal mol?1 for the crystallographically determined structures and by 1.56 kcal mol?1 for the optimized structures (1 kcal mol?1 = 4.184 kJ mol?1). This difference is mainly attributed to the different strengths of the hydrogen bonding in the two forms.  相似文献   

10.
Kinetics and mechanisms for the reactions of HNO with CH3 and C6H5 have been investigated by ab initio molecular orbital (MO) and transition‐state theory (TST) and/or Rice‐Ramsperger‐Kassel‐Marcus/Master Equation (RRKM/ME) calculations. The G2M(RCC, MP2)//B3LYP/6‐31G(d) method was employed to evaluate the energetics for construction of their potential energy surfaces and prediction of reaction rate constants. The reactions R + HNO (R = CH3 and C6H5) were found to proceed by two key product channels giving (1) RH + NO and (2) RNO + H, primarily by direct abstraction and indirect association/decomposition mechanisms, respectively. As both reactions initially occur barrierlessly, their rate constants were evaluated with a canonical variational approach in our TST and RRKM/ME calculations. For practical applications, the rate constants evaluated for the atmospheric‐pressure condition are represented by modified Arrhenius equations in units of cm3 mol?1 s?1 for the temperature range 298–2500 K: κ1A = 1.47 × 1011 T 0.76 exp[?175/ T ], κ2A = 8.06 × 103 T 2.40 exp[?3100/ T ], κ1B = 3.78 × 105 T 2.28 exp[230/ T ], and κ2B = 3.79 × 109 T 1.19 exp[?4800/ T ], where A and B represent CH3 and C6H5 reactions, respectively. Based on the predicted rate constant at 1 atm pressure for R + HNO → RNO + H, we estimated their reverse rate constants for R + HNO production from H + RNO in units of cm3 mol?1 s?1: κ?2A′ = 7.01 × 1010 T 0.84 exp[120/ T ] and κ?2B′ = 2.22 × 1019 T ?1.01 exp[?9700/ T ]. The heats of formation at 0 K for CH3NO, CH3N(H)O, CH3NOH, C6H5N(H)O, and C6H5NOH have been estimated to be 18.6, 18.1, 22.5, 47.2, and 50.7 kcal mol?1 with an estimated ±1 kcal mol?1 error. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 261–274, 2005  相似文献   

11.
The synthesis and the solid state magnetic properties of (nitronyl nitroxide)‐substituted trioxytriphenylamine radical cation tetrachlorogallate, NNTOT+·GaCl4? , are reported. In the temperature region between 300 and 3 K, the magnetic behavior is characterized by the strong intramolecular ferromagnetic interaction (J/kB=+400 K) between the radical ( NN ) and the radical cation ( TOT +) and the weak intermolecular antiferromagnetic interaction (J/kB=?1.9 K) between NNTOT+ ions. Below 3 K, a 3D‐type long‐range magnetic ordering into a weak ferromagnet was observed (TN=2.65 K). The magnetic entropy (Smag=8.97 J K?1 mol?1) obtained by the heat capacity measurement is in good agreement with the theoretical value of R ln3=9.13 J K?1 mol?1 based on the S=1 state.  相似文献   

12.
Comprehensive mechanistic studies on the enantioselective aldol reaction between isatin ( 1 a ) and acetone, catalyzed by L ‐leucinol ( 3 a ), unraveled that isatin, apart from being a substrate, also plays an active catalytic role. Conversion of the intermediate oxazolidine 4 into the reactive syn‐enamine 6 , catalyzed by isatin, was identified as the rate‐determining step by both the calculations (ΔG=26.1 kcal mol?1 for the analogous L ‐alaninol, 3 b ) and the kinetic isotope effect (kH/kD=2.7 observed for the reaction using [D6]acetone). The subsequent reaction of the syn‐enamine 6 with isatin produces (S)‐ 2 a (calculated ΔG=11.6 kcal mol?1). The calculations suggest that the overall stereochemistry is controlled by two key events: 1) the isatin‐catalyzed formation of the syn‐enamine 6 , which is thermodynamically favored over its anti‐rotamer 7 by 2.3 kcal mol?1; and 2) the high preference of the syn‐enamine 6 to produce (S)‐ 2 a on reaction with isatin ( 1 a ) rather than its enantiomer (ΔΔG=2.6 kcal mol?1).  相似文献   

13.
The C?H activation in the tandem, “merry‐go‐round”, [(dppp)Rh]‐catalyzed (dppp=1,3‐bis(diphenylphosphino)propane), four‐fold addition of norborene to PhB(OH)2 has been postulated to occur by a C(alkyl)?H oxidative addition to square‐pyramidal RhIII?H species, which in turn undergoes a C(aryl)?H reductive elimination. Our DFT calculations confirm the RhI/RhIII mechanism. At the IEFPCM(toluene, 373.15 K)/PBE0/DGDZVP level of theory, the oxidative addition barrier was calculated to be 12.9 kcal mol?1, and that of reductive elimination was 5.0 kcal mol?1. The observed selectivity of the reaction correlates well with the relative energy barriers of the cycle steps. The higher barrier (20.9 kcal mol?1) for norbornyl–Rh protonation ensures that the reaction is steered towards the 1,4‐shift (total barrier of 16.3 kcal mol?1), acting as an equilibration shuttle. The carborhodation (13.2 kcal mol?1) proceeds through a lower barrier than the protonation (16.7 kcal mol?1) of the rearranged aryl–Rh species in the absence of o‐ or m‐substituents, ensuring multiple carborhodations take place. However, for 2,5‐dimethylphenyl, which was used as a model substrate, the barrier for carborhodation is increased to 19.4 kcal mol?1, explaining the observed termination of the reaction at 1,2,3,4‐tetra(exo‐norborn‐2‐yl)benzene. Finally, calculations with (Z)‐2‐butene gave a carborhodation barrier of 20.2 kcal mol?1, suggesting that carborhodation of non‐strained, open‐chain substrates would be disfavored relative to protonation.  相似文献   

14.
Quantum mechanics/molecular mechanics calculations in tyrosine ammonia lyase (TAL) ruled out the hypothetical Friedel–Crafts (FC) route for ammonia elimination from L ‐tyrosine due to the high energy of FC intermediates. The calculated pathway from the zwitterionic L ‐tyrosine‐binding state (0.0 kcal mol?1) to the product‐binding state ((E)‐coumarate+H2N? MIO; ?24.0 kcal mol?1; MIO=3,5‐dihydro‐5‐methylidene‐4H‐imidazol‐4‐one) involves an intermediate (IS, ?19.9 kcal mol?1), which has a covalent bond between the N atom of the substrate and MIO, as well as two transition states (TS1 and TS2). TS1 (14.4 kcal mol?1) corresponds to a proton transfer from the substrate to the N1 atom of MIO by Tyr300? OH. Thus, a tandem nucleophilic activation of the substrate and electrophilic activation of MIO happens. TS2 (5.2 kcal mol?1) indicates a concerted C? N bond breaking of the N‐MIO intermediate and deprotonation of the pro‐S β position by Tyr60. Calculations elucidate the role of enzymic bases (Tyr60 and Tyr300) and other catalytically relevant residues (Asn203, Arg303, and Asn333, Asn435), which are fully conserved in the amino acid sequences and in 3D structures of all known MIO‐containing ammonia lyases and 2,3‐aminomutases.  相似文献   

15.
The highly stable nitrosyl iron(II) mononuclear complex [Fe(bztpen)(NO)](PF6)2 (bztpen=N‐benzyl‐N,N′,N′‐tris(2‐pyridylmethyl)ethylenediamine) displays an S=1/2?S=3/2 spin crossover (SCO) behavior (T1/2=370 K, ΔH=12.48 kJ mol?1, ΔS=33 J K?1 mol?1) stemming from strong magnetic coupling between the NO radical (S=1/2) and thermally interconverted (S=0?S=2) ferrous spin states. The crystal structure of this robust complex has been investigated in the temperature range 120–420 K affording a detailed picture of how the electronic distribution of the t2g–eg orbitals modulates the structure of the {FeNO}7 bond, providing valuable magneto–structural and spectroscopic correlations and DFT analysis.  相似文献   

16.
用精密自动绝热量热计测定了4-硝基苯甲醇(4-NBA)在78 ~ 396 K温区的摩尔热容。其熔化温度、摩尔熔化焓及摩尔熔化熵分别为:(336.426 ± 0.088) K, (20.97 ± 0.13) kJ×mol-1 和 (57.24 ± 0.36) J×K-1×mol-1.根据热力学函数关系式,从热容值计算出了该物质在80 ~ 400 K温区的热力学函数值 [HT - H298.15 K] 和[ST - S298.15 K]. 用精密氧弹燃烧量热计测定了该物质在T=298.15 K的恒容燃烧能和标准摩尔燃烧焓分别为 (C7H7NO3, s)=- ( 3549.11 ± 1.47 ) kJ×mol-1 和 (C7H7NO3, s)=- ( 3548.49 ± 1.47 ) kJ×mol-1. 利用标准摩尔燃烧焓和其他辅助热力学数据通过盖斯热化学循环, 计算出了该物质标准摩尔生成焓 (C7H7NO3, s)=- (206.49 ± 2.52) kJ×mol-1 .  相似文献   

17.
Based on a “TADF + Linker” strategy (TADF=thermally activated delayed fluorescence), demonstrated here is the successful construction of conjugated polymers that allow highly efficient delayed fluorescence. Small molecular TADF blocks are linked together using a methyl‐substituted phenylene linker to form polymers. With the growing number of methyl groups on the phenylene, the energy level of the local excited triplet state (3LEb) from the delocalized polymer backbone gradually increases, and finally surpasses the charge‐transfer triplet state (3CT). As a result, the diminished delayed fluorescence can be recovered for the tetramethyl phenylene containing polymer, revealing a record‐high external quantum efficiency (EQE) of 23.5 % (68.8 cd A?1, 60.0 lm W?1) and Commission Internationale de l′Eclairage (CIE) coordinates of (0.25, 0.52). Combined with an orange‐red TADF emitter, a bright white electroluminescence is also obtained with a peak EQE of 20.9 % (61.1 cd A?1, 56.4 lm W?1) and CIE coordinates of (0.36, 0.51).  相似文献   

18.
Chichibabin's and Müller's hydrocarbons are classical open‐shell singlet diradicaloids but they are highly reactive. Herein we report the successful synthesis of their respective stable analogues, OxR‐2 and OxR‐3 , based on the newly developed oxindolyl radical. X‐ray crystallographic analysis on OxR‐2 reveals a planar quinoidal backbone similar to Chichibabin's hydrocarbon, in accordance with its small diradical character (y0=11.1 %) and large singlet–triplet gap (ΔES‐T=−10.8 kcal mol−1). Variable‐temperature NMR studies on OxR‐2 disclose a slow cis/trans isomerization process in solution through a diradical transition state, with a moderate energy barrier (ΔG298K=15–16 kcal mol−1). OxR‐3 exhibits a much larger diradical character (y0=80.6 %) and a smaller singlet–triplet gap (ΔES‐T=−3.5 kcal mol−1), and thus can be easily populated to paramagnetic triplet diradical. Our studies provide a new type of stable carbon‐centered monoradical and diradicaloid.  相似文献   

19.
As determined by both 1H NMR and UV/Vis spectroscopic titration, ESI‐MS, isothermal titration calorimetry, and DFT molecular modeling, advanced glycation end products (AGE) breaker alagebrium (ALA) formed 1:1 guest–host inclusion complexes with cucurbit[7]uril (CB[7]), with a binding affinity, Ka, in the order of magnitude of 105 m ?1, thermodynamically driven by both enthalpy (ΔH=?6.79 kcal mol?1) and entropy (TΔS=1.21 kcal mol?1). For the first time, a dramatic inhibition of keto–enol tautomerism of the carbonyl α‐hydrogen of ALA has been observed, as evidenced by over an order of magnitude decrease of both the first step rate constant, k1, and the second step rate constant, k2, during hydrogen/deuterium exchange in D2O. Meanwhile, as expected, the reactivity of C2‐hydrogen was also inhibited significantly, with an upshift of 2.09 pKa units. This discovery will not only provide an emerging host molecule to modulate keto–enol tautomerism, but also potentially lead to a novel supramolecular formulation of AGE‐breaker ALA for improved stability and therapeutic efficacy.  相似文献   

20.
The photophysics and polarization of the phosphorescence and delayed fluorescence of erythrosin in conditions compatible with the current biological applications of the dye (aqueous buffers at pH 7.4 at ambient temperatures) and in ethanol have been studied as a function of dye concentration (10 ?7-10?5M) and temperature (245–333K). The emission decay is strictly single exponential and the detailed kinetic analysis of all the rate processes connected with the emitting T1 state showed that (1) the lowering of the emission lifetime at the higher temperatures is due to a very efficient self-quenching process, (2) the back intersystem crossing rate Tx S1 is temperature dependent (δETS7 kcal mol?1) but the T1S0 is not (Ea0.1 kcal mol?1) and (3) both intersystem crossing processes are very sensitive to solvent polarity, which accounts for the solvent dependence of the phosphorescence yield and lifetime. The high value of the phosphorescence anisotropy (r0= 0.25 lt 0.006) is independent of the excitation and emission wavelengths, and its evolution in time accurately reflects the rotational restrictions in solid solutions. The relevance of these findings to studies with protein-dye conjugates is also outlined to facilitate the design and interpretation of phosphorescence depolarization experiments that probe the (μs-ms dynamics of biomolecules and supramolecular systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号