首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The progress of white organic light‐emitting diodes (WOLEDs) via adopting fluorescent and phosphorescent organic materials have attracted commercial interest for their broad range of visible spectrum and potential of 100 % internal quantum efficiency. In this account, smart molecular designs for developing efficient phosphorescent host and good color purity blue fluorescent emitters are prepared to be discussed, especially donor‐acceptor modification to regulate their triplet states and bipolar transport properties. Rational device configuration design strategies were also introduced by cooperating with efficient conventional fluorescent and thermally activated delayed fluorescent emitting molecules to achieve full exciton utilization and simplified device structures, further suggesting perspectives of potentially low‐cost, ideal performance and promoted operational lifetime in WOLED devices.  相似文献   

2.
The fabrication of room-temperature organic phosphorescence and afterglow materials, as well as the transformation of their photophysical properties, has emerged as an important topic in the research field of luminescent materials. Here, we report the establishment of energy landscapes in dopant-matrix organic afterglow systems where the aggregation states of luminescent dopants can be controlled by doping concentrations in the matrices and the methods of preparing the materials. Through manipulation by thermodynamic and kinetic control, dopant-matrix afterglow materials with different aggregation states and diverse afterglow properties can be obtained. The conversion from metastable aggregation state to thermodynamic stable aggregation state of the dopant-matrix afterglow materials to leads to the emergence of intriguing afterglow transformation behavior triggered by thermal and solvent annealing. The thermodynamically unfavorable reversible afterglow transformation process can also be achieved by coupling the dopant-matrix afterglow system to mechanical forces.  相似文献   

3.
An organic crystal of 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (pCBP) exhibits time-dependent afterglow color from blue to orange over 1 s. Both experimental and computational data confirm that the color evolution results from well-separated, long-persistent thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) with different but comparable decay rates. TADF is enabled by a small S1–T1 energy gap of 0.7 kcal mol−1. The good separation of TADF and RTP is due to a 11.8 kcal mol−1 difference in the S0 energies of the S1 and T1 structures, indicating that apart from the excited-state properties, tuning the ground state is also important for luminescence properties. This afterglow color evolution of pCBP allows its applications in anticounterfeiting and data encryption with high security levels.  相似文献   

4.
The fact that the lifetime of photoluminescence is often difficult to access because of the weakness of the emission signals, seriously limits the possibility to gain local bioimaging information in time‐resolved luminescence probing. We aim to provide a solution to this problem by creating a general photophysical strategy based on the use of molecular probes designed for single‐luminophore dual thermally activated delayed fluorescence (TADF). The structural and conformational design makes the dual TADF strong in both diluted solution and in an aggregated state, thereby reducing sensitivity to oxygen quenching and enabling a unique dual‐channel time‐resolved imaging capability. As the two TADF signals show mutual complementarity during probing, a dual‐channel means that lifetime mapping is established to reduce the time‐resolved imaging distortion by 30–40 %. Consequently, the leading intracellular local imaging information is serialized and integrated, which allows comparison to any single time‐resolved signal, and leads to a significant improvement of the probing capacity.  相似文献   

5.
Mechanochromic luminescent materials, exhibiting a change in luminescence behavior under external stimuli have emerged as one of the promising candidates for upcoming efficient OLEDs. Recently mechanochromic luminescence was reported in a donor-acceptor-donor (D-A-D) triad featuring two phenothiazine units separated by a dibenzo[a,j]phenazine motif. The triad follows different emissive routes ranging from phosphorescence to TADF based on the conformational switching of the D units. In this article, we investigate such conformation-dependent photophysical behavior of this triad through theoretical calculations. By analyzing the nature of ground state, excited state and factors determining the reverse ISC crossing rates associated with the relative orientation of the D and A units, we delineate the effect of the conformational changes on their photophysical properties. Our findings reveal that axial orientation of both the donor groups enhances the overlap between HOMO and LUMO leading to a large singlet-triplet gap ( ) which drives phosphorescence emission. On the contrary, the equatorial orientation of the donor groups minimizes to facilitate rISC making the conformers TADF active. The role of several geometric factors affecting the photophysical properties of the conformers is also highlighted. Finally, we show how to regulate the population difference among the conformers by functionalizing the triad to harvest the maximum TADF efficiency.  相似文献   

6.
Aggregation‐induced emission (AIE), thermally activated delayed fluorescence (TADF), room‐temperature phosphorescence (RTP), and mechanoluminescence (ML) have attracted widespread interest. However, a multifunctional organic emitter exhibiting simultaneous AIE, TADF, RTP, and ML has not been reported. Now, two multifunctional blue emitters with very simple structures, mono‐DMACDPS and Me‐DMACDPS, exhibit typical AIE, TADF, and RTP properties but different behavior in mechanoluminescence. Crystal structure analysis reveals that large dipole moment and multiple intermolecular interactions with tight packing mode endow mono‐DMACDPS with strong ML. Combined with the data of crystal analysis and theoretical calculation, the separated monomer and dimer in the crystal lead to the typical TADF and RTP properties, respectively. Simple‐structure mono‐DMACDPS is the first example realizing TADF, RTP, AIE, and ML simultaneously.  相似文献   

7.
8.
Developing luminescent probes with long lifetime and high emission efficiency is essential for time‐resolved imaging. However, the practical applications usually suffer from emission quenching of traditional luminogens in aggregated states, or from weak emission of aggregation‐induced emission type luminogens in monomeric states. Herein, we overcome this dilemma by a rigid‐and‐flexible alternation design in donor–acceptor–donor skeletons, to achieve a thermally activated delayed fluorescence luminogen with high emission efficiency both in the monomeric state (quantum yield up to 35.3 %) and in the aggregated state (quantum yield up to 30.8 %). Such a dual‐phase strong and long‐lived emission allows a time‐resolved luminescence imaging, with an efficiency independent of probe pretreatment and probe concentration. The findings open opportunities for developing luminescent probes with a usage in larger temporal and spatial scales.  相似文献   

9.
The weak stability of a hole-transporter upon approaching the anion state is one of the major bottlenecks for developing long-life organic light-emitting devices (OLEDs). Therefore, in this study, we developed a series of thermally and electrically stable hole-transporters that are end-capped with four dibenzofuran units. These materials exhibit i) high bond dissociation energy (BDE) toward the anion state, ii) a high glass transition temperature (Tg>130 °C), and iii) high triplet energy (ET>2.7 eV), thereby enabling approximately 20 % high external quantum efficiency (EQE) and significantly prolonging the stability of both thermally activated delayed fluorescent (TADF) and phosphorescent OLEDs with an operation lifetime at 50 % (LT50) of 20 000–30 000 h at 1000 cd m−2. In addition, investigating their structure-property relationship revealed that ionization potential (IP), BDE, and Tg are critical prerequisites for the hole-transporter to prolong lifetime in OLEDs.  相似文献   

10.
方便地合成了三个含有卤素取代邻苯二甲酰亚胺与咔唑基团的新型有机发光材料Br-Al-Cz,Cl-Al-Cz和F-AI-Cz,发现它们不仅具有强的聚集诱导发光效应,而且显示膜态下热激活延迟荧光以及晶态诱导的室温磷光性质.尤其是化合物Br-Al-Cz表现出肉眼可见的长余辉室温磷光现象,因此在数据加密等中具有潜在用途.  相似文献   

11.
《化学:亚洲杂志》2017,12(17):2299-2303
Aromatic difluoroboronated β‐diketone ( BF2DK ) derivatives are a widely known class of luminescent organic materials that exhibit high photoluminescent quantum efficiency and unique aggregation‐dependent fluorescence behavior. However, there have been only a few reports on their use in solid‐state electronic devices, such as organic light‐emitting devices (OLEDs). Herein, we investigated the solid‐state properties and OLED performance of a series of π‐extended BF2DK derivatives that have previously been shown to exhibit intense fluorescence in the solution state. The BF2DK derivatives formed exciplexes with a carbazole derivative and exhibited thermally activated delayed fluorescence (TADF) behavior to give orange electroluminescence with a peak external quantum efficiency of 10 % that apparently exceeds the theoretical efficiency limit of conventional fluorescent OLEDs (7.5 %), assuming a light out‐coupling factor of 30 %.  相似文献   

12.
Non‐doped organic light‐emitting diodes (OLEDs) possess merits of higher stability and easier fabrication than doped devices. However, luminescent materials with high exciton use are generally unsuitable for non‐doped OLEDs because of severe emission quenching and exciton annihilation in neat films. Herein, we wish to report a novel molecular design of integrating aggregation‐induced delayed fluorescence (AIDF) moiety within host materials to explore efficient luminogens for non‐doped OLEDs. By grafting 4‐(phenoxazin‐10‐yl)benzoyl to common host materials, we develop a series of new luminescent materials with prominent AIDF property. Their neat films fluoresce strongly and can fully harvest both singlet and triplet excitons with suppressed exciton annihilation. Non‐doped OLEDs of these AIDF luminogens exhibit excellent luminance (ca. 100000 cd m?2), outstanding external quantum efficiencies (21.4–22.6 %), negligible efficiency roll‐off and improved operational stability. To the best of our knowledge, these are the most efficient non‐doped OLEDs reported so far. This convenient and versatile molecular design is of high significance for the advance of non‐doped OLEDs.  相似文献   

13.
《中国化学》2018,36(3):241-246
A new multi‐functional penta‐carbazole/benzophenone hybrid compound 5CzBP was designed and synthesized through a simple one‐step catalyst‐free C—N coupling reaction by using 2,3,4,5,6‐pentafluorobenzophenone and carbazole as starting materials. 5CzBP is very soluble in tetrahydrofuran (THF), which brings an environmentally friendly device fabrication for solution‐processed OLEDs instead of most widely used chlorinated solvents when 5CzBP is employed as the bulk‐phase of organic host or non‐doped emitter in the emissive layer. 5CzBP exhibits thermally activated delayed fluorescence (TADF) characteristic with relatively high triplet energy of 2.60 eV and a low ΔEST of 0.01 eV. By using the new TADF material as organic host for another green TADF emitter, maximum external quantum efficiency (EQE) of 12.5% has been achieved in simple solution‐processed OLED device. Besides, a maximum EQE of 8.9% and 5.7% was further obtained in TADF devices based on 5CzBP as dopant and non‐doped emitter, respectively. The simultaneously acting as efficient TADF host and non‐doped TADF emitter provides the potential guidance of the future simple single‐layer two‐color white OLEDs based on low‐cost pure organic TADF materials.  相似文献   

14.
Doping‐free white organic light‐emitting diodes (WOLEDs) have great potential to the next‐generation solid‐state lighting and displays due to the excellent properties, such as high efficiency, bright luminance, low power consumption, simplified structure and low cost. In this account, our recent developments on doping‐free WOLEDs have been summarized. Firstly, fundamental concepts of doping‐free WOLEDs have been described. Then, the effective strategies to develop doping‐free WOLEDs have been presented. Particularly, the manipulation of charges and excitons distribution in different kinds of doping‐free WOLEDs have been highlighted, including doping‐free fluorescent/phosphorescent hybrid WOLEDs, doping‐free thermally activated delayed fluorescent WOLEDs and doping‐free phosphorescent WOLEDs. In the end, an outlook for the future development of doping‐free WOLEDs have been clarified.  相似文献   

15.
A series of green butterfly‐shaped thermally activated delayed fluorescence (TADF) emitters, namely PXZPM , PXZMePM , and PXZPhPM , are developed by integrating an electron‐donor (D) phenoxazine unit and electron‐acceptor (A) 2‐substituted pyrimidine moiety into one molecule via a phenyl‐bridge π linkage to form a D –π–A–π–D configuration. Changing the substituent at pyrimidine unit in these emitters can finely tune their emissive characteristics, thermal properties, and energy gaps between the singlet and triplet states while maintaining frontier molecular orbital levels, and thereby optimizing their optoelectronic properties. Employing these TADF emitters results in a green fluorescent organic light‐emitting diode (OLED) that exhibits a peak forward‐viewing external quantum efficiency (EQE) close to 25 % and a slow efficiency roll‐off characteristic at high luminance.  相似文献   

16.
17.
In this study, we synthesized and characterized multiresonant thermally activated delayed fluorescent (TADF) materials embedded with nitrogen-boron-oxygen (N−B−O), exhibiting color-tunability between blue and green, namely NBO , m-DiNBO , and p-DiNBO . The three emitter materials showed a high photoluminescence quantum yield (PLQY) and a state-of-the-art narrow full width at half maximum (FWHM) of 96 %/25 nm, 87 %/17 nm, and 99 %/19 nm, respectively. For m-DiNBO and p-DiNBO , the emission color could be tuned from blue to green by regulating the nonbonding/bonding molecular orbital characters. Owing to the expanded planar molecular structure, m-DiNBO and p-DiNBO showed high horizontal dipole ratio (Θ) of 88 % and 92 %, respectively. OLEDs were prepared with NBO , m-DiNBO , and p-DiNBO , exhibiting high external quantum efficiencies of 16.8 %, 24.2 %, and 21.6 %, respectively. NBO and m-DiNBO exhibited pure-blue emission with CIE coordinates of (0.137, 0.142) and (0.126, 0.098), respectively. p-DiNBO showed pure-green emission with a CIE coordinate of (0.258, 0.665).  相似文献   

18.
The design and synthesis of organic materials with a narrow emission band in the longer wavelength region beyond 510 nm remain a great challenge. For constructing narrowband green emitters, we propose a unique molecular design strategy based on frontier molecular orbital engineering (FMOE), which can integrate the advantages of a twisted donor–acceptor (D‐A) structure and a multiple resonance (MR) delayed fluorescence skeleton. Attaching an auxiliary donor to a MR skeleton leads to a novel molecule with twisted D‐A and MR structure characteristics. Importantly, a remarkable red‐shift of the emission maximum and a narrowband spectrum are achieved simultaneously. The target molecule has been employed as an emitter to fabricate green organic light‐emitting diodes (OLEDs) with Commission Internationale de L'Eclairage (CIE) coordinates of (0.23, 0.69) and a maximum external quantum efficiency (EQE) of 27.0 %.  相似文献   

19.
Along with the persistent research interest in organic light‐emitting diode (OLED) display and lighting technology, a new studying topic is now focused on developing thermally activated delayed fluorescence (TADF) polymer emitters, with the purpose to achieve high‐performance cost‐effective, solution‐processed OLEDs (s‐OLEDs) purely from fluorescent‐type materials. However, research in this topic is in its infancy about the designing rules of polymer structures, photophysical mechanisms and the correlated devices. In this Personal Account, mainly from our personal experience we will shortly introduce the historical developments, status and perspectives about one representative kinds of TADF polymers, i. e. the conjugated TADF polymers featuring in backbone‐donor/pendant‐acceptor (BDPA) structure scaffold, which shows very promising electroluminescent (EL) performance even using simple s‐OLED structure. Special attention is focused on illustrate the molecular designing & synthesis motivation, chemistry & device tactics towards solving the limiting factors about the quantum yields and aggregation‐quenching tendency in solid states. Further challenges and strategies towards optimizing their overall EL performance, e. g. simultaneous achieving extremely high external quantum efficiency, power efficiency and low roll‐off rate, are also discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号