首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterned graphene-functionalization with a tunable degree of functionalization can tailor the properties of graphene. Here, we present a new reductive functionalization approach combined with lithography rendering patterned graphene-functionalization easily accessible. Two types of covalent patterning of graphene were prepared and their structures were unambiguously characterized by statistical Raman spectroscopy together with scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDS). The reversible defunctionalization processes, as revealed by temperature-dependent Raman spectroscopy, enable the possibility to accurately modulate the degree of functionalization by annealing. This allows for the management of chemical information through complete write/store/erase cycles. Based on our strategy, controllable and efficient patterning graphene-functionalization is no longer a challenge and facilitates the development of graphene-based devices.  相似文献   

2.
Patterned functionalization can, on the one hand, open the band gap of graphene and, on the other hand, program demanding designs on graphene. The functionalization technique is essential for graphene‐based nanoarchitectures. A new and highly efficient method was applied to obtain patterned functionalization on graphene by mild fluorination with spatially arranged AgF arrays on the structured substrate. Scanning Raman spectroscopy (SRS) and scanning electron microscopy coupled with energy‐dispersive X‐ray spectroscopy (SEM‐EDS) were used to characterize the functionalized materials. For the first time, chemical patterning on the bottom side of graphene was realized. The chemical nature of the patterned functionalization was determined to be the ditopic scenario with fluorine atoms occupying the bottom side and moieties, such as oxygen‐containing groups or hydrogen atoms, binding on the top side, which provides information about the mechanism of the fluorination process. Our strategy can be conceptually extended to pattern other functionalities by using other reactants. Bottom‐side patterned functionalization enables utilization of the top side of a material, thereby opening up the possibilities for applications in graphene‐based devices.  相似文献   

3.
Spatially resolved functionalization of 2D materials is highly demanded but very challenging to achieve. The chemical patterning is typically tackled by preventing contact between the reagent and material, which brings various accompanying challenges. Photochemical transformation on the other hand inherently provides remote high spatiotemporal resolution using the cleanest reagent—a photon. Herein, we combine two competing reactions on a graphene substrate to create functionalization patterns on a micrometer scale via the Mitsunobu reaction. The mild reaction conditions allow introduction of covalently dynamic linkages, which can serve as reversible labels for surface‐ or graphene‐enhanced Raman spectroscopy characterization of the patterns prepared. The proposed methodology thus provides a pathway for local introduction of arbitrary functional groups on graphene.  相似文献   

4.
Patterned functionalization can, on the one hand, open the band gap of graphene and, on the other hand, program demanding designs on graphene. The functionalization technique is essential for graphene-based nanoarchitectures. A new and highly efficient method was applied to obtain patterned functionalization on graphene by mild fluorination with spatially arranged AgF arrays on the structured substrate. Scanning Raman spectroscopy (SRS) and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS) were used to characterize the functionalized materials. For the first time, chemical patterning on the bottom side of graphene was realized. The chemical nature of the patterned functionalization was determined to be the ditopic scenario with fluorine atoms occupying the bottom side and moieties, such as oxygen-containing groups or hydrogen atoms, binding on the top side, which provides information about the mechanism of the fluorination process. Our strategy can be conceptually extended to pattern other functionalities by using other reactants. Bottom-side patterned functionalization enables utilization of the top side of a material, thereby opening up the possibilities for applications in graphene-based devices.  相似文献   

5.
The simultaneous polymer functionalization and exfoliation of graphene sheets by using mild bath sonication and heat treatment at low temperature is described. In particular, free‐radical polymerization of three different vinyl monomers takes place in the presence of graphite flakes. The polymerization procedure leads to the exfoliation of graphene sheets and at the same time the growing polymer chains are attached onto the graphene lattice, which gives solubility and stability to the final graphene‐based hybrid material. The polymer‐functionalized graphene sheets possess fewer defects as compared with previously reported polymer‐functionalized graphene. The success of the covalent functionalization and exfoliation of graphene was confirmed by using a variety of complementary spectroscopic, thermal, and microscopy techniques, including Raman, IR and UV/Vis spectroscopy, thermogravimetric analysis, and transmission electron microscopy.  相似文献   

6.
Biodegradability of graphene is one of the fundamental parameters determining the fate of this material in vivo. Two types of aqueous dispersible graphene, corresponding to single‐layer (SLG) and few‐layer graphene (FLG), devoid of either chemical functionalization or stabilizing surfactants, were subjected to biodegradation by human myeloperoxidase (hMPO) mediated catalysis. Graphene biodegradation was also studied in the presence of activated, degranulating human neutrophils. The degradation of both FLG and SLG sheets was confirmed by Raman spectroscopy and electron microscopy analyses, leading to the conclusion that highly dispersed pristine graphene is not biopersistent.  相似文献   

7.
There is an excitement around graphene as a promising new material for nanotechnological and nanoarchitectonic applications. Despite the low chemical reactivity of graphene, chemical functionalization remains a prominent and viable solution to tailor its chemical, physical, and electronic properties. Herein, we report the covalent functionalization of reduced graphene oxide through Friedel–Crafts reactions under mild conditions of polyphosphoric-acid/phosphorus-pentoxide and 4-aminobenzoic acid. Successful functionalization was confirmed by X-ray photoelectron spectroscopy (XPS), FTIR, and Raman spectroscopy. The success of the Friedel–Crafts reaction provides an important expansion of the synthetic “toolbox” for future modifications of graphene towards the specific needs of different applications.  相似文献   

8.
The large‐scale preparation of graphene is of great importance due to its potential applications in various fields. We report herein a simple method for the simultaneous exfoliation and reduction of graphene oxide (GO) to reduced GO (rGO) by using alkynyl‐terminated dopamine as the reducing agent. The reaction was performed under mild conditions to yield rGO functionalized with the dopamine derivative. The chemical reactivity of the alkynyl function was demonstrated by post‐functionalization with two thiolated precursors, namely 6‐(ferrocenyl)hexanethiol and 1H,1H,2H,2H‐perfluorodecanethiol. X‐ray photoelectron spectroscopy, UV/Vis spectrophotometry, Raman spectroscopy, conductivity measurements, and cyclic voltammetry were used to characterize the resulting surfaces.  相似文献   

9.
Heteroatom functionalization on a graphene surface can endow the physical and structural properties of graphene. Here, a one-step in situ polymerization method was used for the noncovalent functionalization of a graphene surface with poly-N-vinyl-2-pyrrolidone (PNVP) and the exfoliation of graphite into graphene sheets. The obtained graphene/poly-N-vinyl pyrrolidone (GPNVP) composite was thoroughly characterized. The surface morphology of GPNVP was observed using field emission scanning electron microscopy and high-resolution transmission electron microscopy. Raman spectroscopy and X-ray diffraction studies were carried out to check for the exfoliation of graphite into graphene sheets. Thermogravimetric analysis was performed to calculate the amount of PNVP on the graphene surface in the GPNVP composite. The successful formation of the GPNVP composite and functionalization of the graphene surface was confirmed by various studies. The cyclic voltammetry measurement at different scan rates (5–500 mV/s) and electrochemical impedance spectroscopy study of the GPNVP composite were performed in the typical three-electrode system. The GPNVP composite has excellent rate capability with the capacitive property. This study demonstrates the one-pot preparation of exfoliation and functionalization of a graphene surface with the heterocyclic polymer PNVP; the resulting GPNVP composite will be an ideal candidate for various electrochemical applications.  相似文献   

10.
Graphene/acridine(G-Acr) hybrid structures were synthesized through covalent functionalization of graphene oxide with 9-(4- aminophenyl)acridine(APA) and its derivatives.The G-Acr hybrids were characterized by Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometry,thermal gravimetric analysis and Raman spectroscopy.X-ray photoelectron spectroscopy confirms that the binding energies of APA and its derivatives shifted to higher values,revealing pronounced charge transfer at the interface of graphene and organic molecules.  相似文献   

11.
Two types of graphene‐based hybrid materials, graphene‐TPP (TPP=tetraphenylporphyrin) and graphene‐PdTPP (PdTPP=palladium tetraphenylporphyrin), were prepared directly from pristine graphene through one‐pot cycloaddition reactions. The hybrid materials were characterized by thermogravimetric analysis (TGA), by TEM, by UV/Vis, FTIR, Raman, and luminescence spectroscopy, and by fluorescence/phosphorescence lifetime measurements. The presence of the covalent linkages between graphene and porphyrin was confirmed by FTIR and Raman spectroscopy and further supported by control experiments. The presence of TPP (or PdTPP) in the hybrid material was demonstrated by UV/Vis spectroscopy, with TGA results indicating that the graphene‐TPP and graphene‐PdTPP hybrid materials contained approximately 18 % TPP and 20 % PdTPP. The quenching of fluorescence (or phosphorescence) and reduced lifetimes suggest excited state energy/electron transfer between graphene and the covalently attached TPP (or PdTPP) molecules.  相似文献   

12.
The development of versatile functionalization concepts for graphene is currently in the focus of research. Upon oxo‐functionalization of graphite, the full surface of graphene becomes accessible for C?C bond formation to introduce out‐of‐plane functionality. Herein, we present the arylation of graphene with arylazocarboxylic tert‐butyl esters, which generates aryl radicals after activation with an acid. Surprisingly, the degree of functionalization is related to the concentration of lattice vacancy defects in the graphene material. Consequently, graphene materials that are free from lattice defects are not reactive. The reaction can be applied to graphene dispersed in solvents and leads to bitopic functionalization as well as monotopic functionalization when the graphene is deposited on surfaces. As the arylazocarboxylic tert‐butyl ester moiety can be attached to various molecules, the presented method paves the way to functional graphene derivatives, with the density of defects determining the degree of functionalization.  相似文献   

13.
The chemical functionalization of hydrogenated graphene can modify its physical properties and lead to better processability. Herein, we describe the chemical functionalization of hydrogenated graphene through a dehydrogenative cross‐coupling reaction between an allylic C?H bond and the α‐C?H bond of tetrahydrothiophen‐3‐one using Cu(OTf)2 as the catalyst and DDQ as the oxidant. The chemical functionalization was confirmed by X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy and visualized by scanning electron microscopy. The functionalized hydrogenated graphene material demonstrated improved dispersion stability in water, bringing new quality to the elusive hydrogenated graphene (graphane) materials. Hydrogenated graphene provides broad possibilities for chemical modifications owing to its reactivity.  相似文献   

14.
Graphene is a material of unmatched properties and eminent potential in disciplines ranging from physics, to chemistry, to biology. Its advancement to applications with a specific function requires rational design and fine tuning of its properties, and covalent introduction of various substituents answers this requirement. We challenged the obstacle of non‐trivial and harsh procedures for covalent functionalization of pristine graphene and developed a protocol for mild nucleophilic introduction of organic groups in the gas phase. The painstaking analysis problem of monolayered materials was addressed by using surface‐enhanced Raman spectroscopy, which allowed us to monitor and characterize in detail the surface composition. These deliverables provide a toolbox for reactivity of fluorinated graphene under mild reaction conditions, providing structural freedom of the species to‐be‐grafted to the single‐layer graphene.  相似文献   

15.
Ferromagnetism of pure carbon-based materials has been widely researched for several years. In therocially and experimentally, semi-hydrogenation graphene sheets exhibit ferromagnitism, which is related to the degree of hydrogenation. Here we reported the controllable hydrogenation of graphene using ball-milling method with acetic acid as hydrogenating agent. The hydrogenation graphene sheets were characterized by means of transmission electron microscopy(TEM), Raman spectroscopy and X-ray photoelectron spectroscopy, and magnetic measurement. The relusts of Raman spectroscopy demonstrate that the relative intensity of D band increases with the hydrogenation degree. The resluts of magnetic meansurement indicate the maximal magnetic moment of 0.274 A·m2/kg at 2 K for semi-hydrogenation graphene.  相似文献   

16.
It is well-known that chemical functionalization of graphene has the great significance.We report the development of a new synthesis method of chloro-functionalized reduced graphene oxide(rGOCl).The rGOCl was prepared by radical reaction,and treatment of carboxyl graphene oxide(GOCOOH) with N-chlorosuccinimide(NCS) at 90℃ for 10 h under an atmosphere of nitrogen,using silver nitrate as catalyst.The morphologies and structures of the prepared materials were investigated by field-emission scanning electron microscopy(FESEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),Raman spectroscopy and the thermal gravimetric.Results indicated that the rGOCl can be readily obtained from graphene oxide(GO) in three steps.  相似文献   

17.
李坤威  刘晶冰  郝欢欢  汪浩 《化学通报》2017,80(3):236-240,245
石墨烯独特的二元化电子价键结构使其在纳米电子器件中具有良好的应用发展前景。拉曼光谱作为一种灵敏、便捷的技术,已被成功地用作表征石墨烯的结构和特性。本综述着重对沉积在不同基底以及掺杂的石墨烯拉曼光谱研究做了一个简单的总结。通过对铟锡氧化物、蓝宝石和玻璃基底上的石墨烯拉曼光谱进行观察,发现在不同基底上的石墨烯拉曼G峰与2D峰峰值会有不同程度的偏移,但2D峰峰值可判断石墨烯层数这一结论仍适用。掺杂可改变石墨烯的荷电状态,使石墨烯表现出空穴(p)型或电子(n)型掺杂特性,通过石墨烯拉曼光谱的变化可以定性石墨烯的掺杂类别并定量表征石墨烯的载流子浓度。  相似文献   

18.
氧化石墨烯的可控还原及结构表征   总被引:1,自引:0,他引:1  
采用氧化还原法, 通过控制还原时间制备了不同还原程度的石墨烯; 用红外光谱、 紫外光谱、 拉曼光谱、 X射线衍射、 热重分析、 电导率测量等多种手段系统研究了不同还原程度石墨烯的结构与性能; 采用透射电子显微镜、 扫描电子显微镜和原子力显微镜比较了氧化石墨烯和石墨烯的形貌. 结果表明, 随着还原程度的增加, 石墨烯中含氧基团减少, 紫外吸收峰逐渐红移, D带与G带的强度比增加, 热稳定性和导电性提高. 微观结构表征说明石墨烯比氧化石墨烯片的厚度增加, 褶皱增多.  相似文献   

19.
以氧化石墨烯(GO)为原料,N-溴代丁二酰亚胺(NBS)为溴代试剂,硫代硫酸钠为还原剂,通过羧基化、溴化和还原三步法,采用自由基反应的方式制备了溴功能化还原氧化石墨烯(rGOBr).通过X射线衍射、扫描电子显微镜、红外光谱、拉曼光谱以及X射线光电子能谱等手段对rGOBr的结构、微观形貌和元素组成进行了表征.结果表明,溴元素以共价键的形式分布在石墨烯表面.本方法原料来源广泛、操作简单且条件温和,为石墨烯的溴功能化提供了一条新途径.  相似文献   

20.
Graphene production by wet chemistry is an ongoing scientific challenge. Controlled oxidation of graphite introduces oxo functional groups; this material can be processed and converted back to graphene by reductive defunctionalization. Although thermal processing yields conductive carbon, a ruptured and undefined carbon lattice is produced as a consequence of CO2 formation. This thermal process is not understood, but it is believed that graphene is not accessible. Here, we thermally process oxo-functionalized graphene (oxo-G) with a low (4–6 %) and high degree of functionalization (50–60 %) and find on the basis of Raman spectroscopy and transmission electron microscopy performed at atomic resolution (HRTEM) that thermal processing leads predominantly to an intact carbon framework with a density of lattice defects as low as 0.8 %. We attribute this finding to reorganization effects of oxo groups. This finding holds out the prospect of thermal graphene formation from oxo-G derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号