首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
An aza-BODIPY dye 1 bearing two hydrophobic fan-shaped tridodecyloxybenzamide pendants through 1,2,3-triazole linkages was synthesized by a click reaction and characterized. 1H NMR studies indicated that dye 1 exhibited variable conformations through intramolecular H-bonding interaction, which is beneficial for the polymorphism of aggregation. The thermodynamic, structural, and kinetic aspect of the supramolecular polymerization of dye 1 was investigated by UV/Vis absorption spectroscopy, IR spectroscopy, AFM, TEM, and SEM. Biphasic aggregation pathways of dye 1 , leads to the formation of off-pathway, metastable Agg. I and thermodynamically stable Agg. II with distinct H-aggregation spectra and nanoscale morphology. The living manner of the supramolecular polymerization of dye 1 was demonstrated in seeded polymerization experiments with temperature-modulated successive cooling–heating cycles.  相似文献   

2.
ω‐Telechelic poly(p‐phenylene vinylene) species (PPVs) are prepared by living ring‐opening metathesis polymerization of a [2.2]paracyclophane‐1,9‐diene in the presence of Hoveyda–Grubbs 2nd generation initiator, with terminating agents based on N1,N3‐bis(6‐butyramidopyridin‐2‐yl)‐5‐hydroxyisophthalamide (Hamilton wedge), cyanuric acid, PdII–SCS‐pincer, or pyridine moieties installing the supramolecular motifs. The resultant telechelic polymers are self‐assembled into supramolecular block copolymers (BCPs) via metal coordination or hydrogen bonding and analyzed by 1H NMR spectroscopy. The optical properties are examined, whereby individual PPVs exhibit similar properties regardless of the nature of the end group. Upon self‐assembly, different behaviors emerge: the hydrogen‐bonding BCP behaves similarly to the parent PPVs whereas the metallosupramolecular BCP demonstrates a hypsochromic shift and a more intense emission owing to the suppression of aggregation. These results demonstrate that directional self‐assembly can be a facile method to construct BCPs with semiconducting networks, while combating solubility and aggregation.  相似文献   

3.
The performance of opto‐electronic devices built from low‐molecular‐weight dye molecules depends crucially on the stacking properties and the resulting coupling of the chromophoric systems. Herein we investigate the influence of H‐bonding amide and bulky substituents on the π‐stacking of pyrene‐containing small molecules in dilute solution, as supramolecular aggregates, and in the solid state. A set of four pyrene derivatives was synthesized in which benzene or 4‐tert‐butyl benzene was linked to the pyrene unit either through an ester or an amide. All four molecules form supramolecular H‐aggregates in THF solution at concentrations above 1×10?4 mol L?1. These aggregates were transferred on a solid support and crystallized. We investigate: the excimer formation rates within supramolecular aggregates; the formation of H‐bonds as well as the optical changes during the transition from the amorphous to the crystalline state; and the excimer to monomer fluorescence ratio in crystalline films at low temperatures. We reveal that in solution supramolecular aggregation depends predominantly on the pyrene chromophores. In the crystalline state, however, the pyrene stacking can be controlled gradually by H‐bonding and steric effects. These results are further confirmed by molecular modeling. This work bears fundamental information for tailoring the solid state of functional optoelectronic materials.  相似文献   

4.
A new family of 120° carbazole‐based dendritic donors D1 – D3 have been successfully designed and synthesized, from which a series of novel supramolecular carbazole‐based metallodendrimers with well‐defined shapes and sizes were successfully prepared by [2+2] and [3+3] coordination‐driven self‐assembly. The structures of newly designed rhomboidal and hexagonal metallodendrimers were characterized by multinuclear NMR (1H and 31P) spectroscopy, ESI‐TOF mass spectrometry, FTIR spectroscopy, and the PM6 semiempirical molecular orbital method. The fluorescence emission behavior of ligands D1 – D3 , rhomboidal metallodendrimers R1 – R3 , and hexagonal metallodendrimers H1 – H3 in mixtures of dichloromethane and n‐hexane with different n‐hexane fractions were investigated. The results indicated that D1 – D3 featured typical aggregation‐induced emission (AIE) properties. However, different from ligands D1 – D3 , metallodendrimers R1 – R3 and H1 – H3 presented interesting generation‐dependent AIE properties. Furthermore, evidence for the aggregation of these metallodendrimers was confirmed by a detailed investigation of dynamic light‐scattering, Tyndall effect, and SEM. This research not only provides a highly efficient strategy for constructing carbazole‐based dendrimers with well‐defined shapes and sizes, but also presents a new family of carbazole‐based dendritic ligands and rhomboidal and hexagonal metallodendrimers with interesting AIE properties.  相似文献   

5.
The self‐assembling nature and phase‐transition behavior of a novel class of triarm, star‐shaped polymer–peptide block copolymers synthesized by the combination of atom transfer radical polymerization and living ring‐opening polymerization of α‐amino acid‐N‐carboxyanhydride are demonstrated. The two‐step synthesis strategy adopted here allows incorporating polypeptides into the usual synthetic polymers via an amido–amidate nickelacycle intermediate, which is used as the macroinitiator for the growth of poly(γ‐benzyl‐L ‐glutamate). The characterization data are reported from analyses using gel permeation chromatography and infrared, 1H NMR, and 13C NMR spectroscopy. This synthetic scheme grants a facile way to prepare a wide range of polymer–peptide architectures with perfect microstructure control, preventing the formation of homopolypeptide contaminants. Studies regarding the supramolecular organization and phase‐transition behavior of this class of polymer‐block‐polypeptide copolymers have been accomplished with X‐ray diffraction, infrared spectroscopy, and thermal analyses. The conformational change of the peptide segment in the block copolymer has been investigated with variable‐temperature infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2774–2783, 2006  相似文献   

6.
A systematic study of the influence of solvent and the size of C3‐symmetric discotics on their supramolecular polymerization mechanism is presented. The cooperativity of the self‐assembly of the reported compounds is directly related to their gelation ability. The two series of C3‐symmetric discotics investigated herein are based on benzene‐1,3,5‐tricarboxamides (BTAs) and oligo(phenylene ethynylene)‐based tricarboxamides (OPE? TAs) that are peripherally decorated with achiral ( 1 a and 2 a ) or chiral N‐(2‐aminoethyl)‐3,4,5‐trialkoxybenzamide units ( 1 b and 2 b ). The supramolecular polymerization of compounds 1 a , b and 2 a , b has been exhaustively investigated in a number of solvents and by using various techniques: variable‐temperature circular dichroism (VT‐CD) spectroscopy, concentration‐dependent 1H NMR spectroscopy, and isothermal titration calorimetry (ITC). The supramolecular polymerization mechanism of compounds 2 is highly cooperative in solvents such as methylcyclohexane and toluene and is isodesmic in CHCl3. Unexpectedly, chiral compound 1 b is practically CD‐silent, in contrast with previously reported BTAs. ITC measurements in CHCl3 demonstrated that the supramolecular polymerization of BTA 1 a is isodesmic. These results confirm the strong influence of the π‐surface of the central aromatic core of the studied discotic and the branched nature of the peripheral side chains on the supramolecular polymerization. The gelation ability of these organogelators is negated in CHCl3, in which the supramolecular polymerization mechanism is isodesmic.  相似文献   

7.
Monoalkynyl‐functionalized fullerene was precisely synthesized starting with pristine fullerene (C60) and characterized by multiple techniques. Methyl methacrylate and 6‐azido hexyl methacrylate were then randomly copolymerized via reversible addition fragmentation chain transfer polymerization to build polymer backbones with well‐controlled molecular weights and copolymer compositions. Finally, these two moieties were covalently assembled into a series of well‐defined side chain fullerene polymers (SFPs) via the copper‐mediated click reaction which was verified by Fourier transform infrared spectroscopy and 1H NMR. The fullerene loadings of the resultant polymers were estimated by thermogravimetric analysis and UV–vis spectroscopy, demonstrating consistent and high conversions in most of the samples. The morphology studies of the SFPs were performed both in solution and on solid substrates. Very intriguing self‐aggregation behaviors were detected by both gel permeation chromatography and dynamic light scattering analyses. Furthermore, the scanning electron microscopic images of these polymers showed the formation of various supramolecular nanoparticle assemblies and crystalline‐like clusters depending on the fullerene contents and polymer chain lengths. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3572–3582  相似文献   

8.
The inclusion of the fluorescent organic dye, ethyl 3‐(7‐hydroxy‐2‐oxo‐2H‐chromen‐3‐yl)‐3‐oxopropanoate ( 1 ) by the host β‐cyclodextrin (β‐CD), and its response toward mercuric ions (Hg2+), was studied by UV/Vis, fluorescence, and 1H NMR spectroscopic analyses, mass spectrometry and molecular modeling studies. 1H NMR measurements together with molecular modeling studies for dye 1 demonstrate that it exhibits two tautomeric forms (keto and enol); however, when the dye is included into the β‐CD cavity, the enol form predominates. Moreover, by using spectroscopic and spectrometry techniques, a 1:1 stoichiometry was determined for the complexes formed between dye 1 (enol form) and β‐CD, with a binding constant (Kb1=1.8×104 m ?1) and for the dye 1 (keto form)‐Hg2+ (Kb2=2.3×103 m ?1). Interestingly, in the presence of 1 –β‐CD complex and mercuric ions, a ternary supramolecular system (Hg– 1 –β‐CD complex) was established, with a 1:1:1 stoichiometry and a Kb3 value of 4.3×103 m ?1, with the keto form of the dye being the only one present in this assembly. The three‐component system provides a starting point for the development of novel and directed supramolecular assemblies.  相似文献   

9.
Amphiphilic supramolecular miktoarm star copolymers linked by ionic bonds with controlled molecular weight and low polydispersity have been successfully synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization using an ion‐bonded macromolecular RAFT agent (macro‐RAFT agent). Firstly, a new tetrafunctional initiator, dimethyl 4,6‐bis(bromomethyl)‐isophthalate, was synthesized and used as an initiator for atom transfer radical polymerization (ATRP) of styrene to form polystyrene (PSt) containing two ester groups at the middle of polymer chain. Then, the ester groups were converted into tertiary amino groups and the ion‐bonded supramolecular macro‐RAFT agent was obtained through the interaction between the tertiary amino group and 2‐dodecylsulfanylthiocarbonylsulfanyl‐2‐methyl propionic acid (DMP). Finally, ion‐bonded amphiphilic miktoarm star copolymer, (PSt)2‐poly(N‐isopropyl‐acrylamide)2, was prepared by RAFT polymerization of N‐isopropylacrylamide (NIPAM) in the presence of the supramolecular macro‐RAFT agent. The polymerization kinetics was investigated and the molecular weight and the architecture of the resulting star polymers were characterized by means of 1H‐NMR, FTIR, and GPC techniques. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5805–5815, 2008  相似文献   

10.
Hyperbranched polyethylenimine (HPEI) was simply mixed with a solution of amphiphilic calix[4]arene (AC4), which possesses four phenol groups and four aliphatic chains, in chloroform. This resulted in the novel supramolecular complex HPEI–AC4 through the noncovalent interaction of the amino groups of HPEI with the phenol groups of AC4. The formed HPEI–AC4 supramolecular complexes were characterized by 1H NMR spectroscopy and dynamic light scattering. The cationic water‐soluble dye methyl blue (MB) and the anionic water‐soluble dye methyl orange (MO) were used as the model guests to test the performance of HPEI–AC4 as a supramolecular nanocarrier. It was found that HPEI–AC4 could accommodate the anionic water‐soluble MO guests into the HPEI core. The MO encapsulation capacity of HPEI–AC4 was pH sensitive, which reached maximum loading under weakly acidic conditions. The loaded MO molecules could be totally released when the pH value was reduced to be around 4.5 or raised to be around 9.5, and this process was reversible. HPEI–AC4 could not only accommodate the anionic MO with the HPEI core but could also simultaneously load the cationic MB molecules using the formed AC4 shell, thereby realizing the site isolation of the two kinds of functional units. The amount of MO and MB encapsulated by HPEI–AC4 could be controlled by varying the ratio of hydroxyl groups of AC4 to amino groups of HPEI.  相似文献   

11.
Amphiphilic diblock copolymers of polystyrene (PS) and poly(N‐vinylpyrrolidone) (PNVP) were prepared by a combination of ATRP and MADIX. Well‐defined PS with bromine end group was synthesized by ATRP in bulk at 110 °C using (1‐bromoethyl) benzene as an initiator. The Br‐ end group was then converted to xanthate as verified by 1H NMR spectroscopy, elemental analysis, and UV‐spectroscopy. PS‐b‐PNVP copolymers were produced by MADIX of NVP in bulk at 60 °C using PS‐xanthate as a macro‐chain transfer agent and the kinetics of polymerization were investigated. The structures of PS‐b‐PNVP were characterized using GPC and 1H NMR. Amphiphilic PS‐b‐PNVP could form spherical micelles with PS cores and PNVP shells in aqueous solution as confirmed by 1H NMR and laser light scattering (LLS). The values of critical micelle concentration of PS‐b‐PNVP and the average aggregation number of PS‐b‐PNVP in the micelles were measured using pyrene as a probe and static LLS, respectively. The aggregation number increases concomitantly with temperature (10–50 °C), but the hydrodynamic radius of the micelles remains almost constant over the same temperature range, which may indicate shell dehydration at a higher temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5604–5615, 2008  相似文献   

12.
By exploiting orthogonal hydrogen bonding involving supramolecular synthons and hydrophobic/hydrophilic interactions, a new series of simple organic salt based hydrogelators derived from pyrene butyric acid and its β‐alanine amide derivative, and various primary amines has been achieved. The hydrogels were characterised by microscopy, table‐top rheology and dynamic rheology. FTIR, variable‐temperature 1H NMR and emission spectroscopy established the role of various supramolecular interactions such as hydrogen bonding and π–π stacking in hydrogelation. Single‐crystal X‐ray diffraction (SXRD) studies supported the conclusion that orthogonal hydrogen bonding involving amide–amide and primary ammonium monocarboxylate (PAM) synthons indeed played a crucial role in hydrogelation. The hydrogels were found to be stimuli‐responsive and were capable of sensing ammonia and adsorbing water‐soluble dye (methylene blue). All the hydrogelators were biocompatible (MTT assay in RAW 264.7 cells), indicating their suitability for use in drug delivery.  相似文献   

13.
Summary: The oxidative polymerization of N‐glucosylaniline was carried out using ammonium persulfate as the oxidant in phosphate buffer. The structure of the isolated polymer was determined by 1H NMR, 13C NMR, and UV‐vis spectroscopy to be the polyaniline having glucose residues attached to the general polyaniline unit. Participation of the ortho‐position of the aromatic ring in the polymerization was also confirmed by the analyses.

The oxidative polymerization of N‐glucosylaniline.  相似文献   


14.
Summary: A low‐molar‐mass poly(acrylic acid) with a narrow molar‐mass distribution, prepared by SG1 nitroxide‐mediated controlled free‐radical polymerization, was subjected to end‐group analysis to confirm its living nature. 1H and 31P NMR spectroscopy confirmed the presence of the SG1‐based alkoxyamine end group. Furthermore, chain extension with styrene and n‐butyl acrylate demonstrated the ability of the homopolymer to initiate the polymerization of a second block. These results open the door to the synthesis of poly(acrylic acid)‐based block copolymers by direct nitroxide‐mediated polymerization of acrylic acid.

Acrylic acid polymerization using an alkoxyamine initiator based on SG1 (N‐tert‐butyl‐N‐(1‐diethyl phosphono‐2,2‐dimethylpropyl) nitroxide resulting in a homopolymer capable of initiating the polymerization of a second block.  相似文献   


15.
A series of diblock‐copolymers were synthesized through anionic polymerization of styrene and tert‐butyl methacrylate (tBuA) with different monomer ratios, and analogous block‐copolymeric derivatives (PS‐b‐PAA)s with monofunctional carboxylic acid groups were obtained by further hydrolyzation as hydrogen‐bonded (H‐bonded) proton donors. Via H‐bonded interaction, these diblock‐coplymeric donors (PS‐b‐PAA)s were incorporated with luminescent mono‐pyridyl/bis‐pyridyl acceptors to form single/double H‐bonded supramolecules, that is, H‐bonded side‐chain/cross‐linking copolymers, respectively. The supramolecular architectures formed by donor polymers and light‐emitting acceptors were influenced by the ratio of acid blocks in the diblock copolymeric donors and the type of single/double H‐bonded light‐emitting acceptors. Their thermal and luminescent properties can be adjusted by H‐bonds, and more than 100 nm of red‐shifted photoluminescence (PL) emissions were observed, which depend on the degrees of the H‐bonding interactions. Self‐assembled phenomena of amphiphilic dibolck copolymers and their H‐bonded complexes were confirmed by TEM micrographs, and supramolecular microphase separation of spherical micelle‐like morphology was demonstrated to affect the photophysical properties. Polymer light‐emitting diode (PLED) devices containing H‐bonded complexes showed electroluminescence (EL) emissions of 503–560 nm under turn‐on voltages of 7.5–9.0 V, maximum power efficiencies of 0.23–0.37 cd/A (at 100 mA/cm2), and maximum luminances of 318–519 cd/m2 (around 25 V). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4685–4702, 2009  相似文献   

16.
A polyoxometalate‐based molecular triangle has been synthesized through the metal‐driven self‐assembly of covalent organic/inorganic hybrid oxo‐clusters with remote pyridyl binding sites. The new metallomacrocycle was unambiguously characterized by using a combination of 1H NMR spectroscopy, 2D diffusion NMR spectroscopy (DOSY), electrospray ionization travelling wave ion mobility mass spectrometry (ESI‐TWIM‐MS), small‐angle X‐ray scattering (SAXS) and molecular modelling. The collision cross‐sections obtained from TWIM‐MS and the hydrodynamic radii derived from DOSY are in good agreement with the geometry‐optimized structures obtained by using theoretical calculations. Furthermore, SAXS was successfully employed and proved to be a powerful technique for characterizing such large supramolecular assemblies.  相似文献   

17.
A new host molecule consists of four terpyridine groups as the binding sites with zinc(II) ion and a copillar[5]arene incorporated in the center as a spacer to interact with guest molecule was designed and synthesized. Due to the 120 ° angle of the rigid aromatic segment, a cross‐linked dimeric hexagonal supramolecular polymer was therefore generated as the result of the orthogonal self‐assembly of metal–ligand coordination and host–guest interaction. UV/Vis spectroscopy, 1H NMR spectroscopy, viscosity and dynamic light‐scattering techniques were employed to characterize and understand the cross‐linking process with the introduction of zinc(II) ion and guest molecule. More importantly, well‐defined morphology of the self‐assembled supramolecular structure can be tuned by altering the adding sequence of the two components, that is, the zinc(II) ion and the guest molecule. In addition, introduction of a competitive ligand suggested the dynamic nature of the supramolecular structure.  相似文献   

18.
Novel AB2‐type monomers such as 3,5‐bis(4‐methylolphenoxy)benzoic acid ( monomer 1 ), methyl 3,5‐bis(4‐methylolphenoxy) benzoate ( monomer 2 ), and 3,5‐bis(4‐methylolphenoxy)benzoyl chloride ( monomer 3 ) were synthesized. Solution polymerization and melt self‐polycondensation of these monomers yielded hydroxyl‐terminated hyperbranched aromatic poly(ether‐ester)s. The structure of these polymers was established using FTIR and 1H NMR spectroscopy. The molecular weights (Mw) of the polymers were found to vary from 2.0 × 103 to 1.49 × 104 depending on the polymerization techniques and the experimental conditions used. Suitable model compounds that mimic exactly the dendritic, linear, and terminal units present in the hyperbranched polymer were synthesized for the calculation of degree of branching (DB) and the values ranged from 52 to 93%. The thermal stability of the polymers was evaluated by thermogravimetric analysis, which showed no virtual weight loss up to 200 °C. The inherent viscosities of the polymers in DMF ranged from 0.010 to 0.120 dL/g. End‐group modification of the hyperbranched polymer was carried out with phenyl isocyanate, 4‐(decyloxy)benzoic acid and methyl red dye. The end‐capping groups were found to change the thermal properties of the polymers such as Tg. The optical properties of hyperbranched polymer and the dye‐capped hyperbranched polymer were investigated using ultraviolet‐absorption and fluorescence spectroscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5414–5430, 2008  相似文献   

19.
A linear supramolecular architecture was successfully constructed by the inclusion complexation of α‐cyclodextrin with azobenzene and the host‐stabilized charge‐transfer interaction of naphthalene and a bispyridinium guest with cucurbit[8]uril in water, which was comprehensively characterized by 1H NMR spectroscopy, UV/Vis absorption, fluorescence, circular dichroism spectroscopy, dynamic laser scattering, and microscopic observations. Significantly, because it benefits from the photoinduced isomerization of the azophenyl group and the chemical reduction of bispyridinium moiety with noncovalent connections, the assembly/disassembly process of this supramolecular nanostructure can be efficiently modulated by external stimuli, including temperature, UV and visible‐light irradiation, and chemical redox.  相似文献   

20.
Diaryliodonium salts spontaneously form crystalline 1:1 supramolecular complexes at room temperature in good to excellent yields with 18‐crown‐6 ether and its cyclohexano‐ and benzo‐substituted analogs. The complexes were characterized using IR, UV, MS, 1H, and 13C‐NMR spectroscopy and by single crystal X‐ray crystallography. The analytical data obtained were consistent with a structure in which the positively charged iodine atom of diaryliodonium cation is positioned above and over the center of the crown ether ring with the positively charged iodine atom coordinated to the crown ether oxygen atoms. The diaryliodonium salt‐crown ether complexes are photosensitive and were used to carry out the photoinitiated cationic polymerizations of a number of mono‐ and difunctional monomers. During irradiation with UV light, the supramolecular complexes undergo photolysis with the generation of a Brønsted acid and with the concomitant release of the crown ether. When used as photoinitiators, the crown ether that is released markedly influences the kinetics of the subsequent cationic polymerization of the monomer. Further studies demonstrated that the photolysis of diaryliodonium salt‐crown ether supramolecular complexes can be photosensitized using typical‐electron transfer photosensitizers. Free radical‐promoted photosensitization using typical unimolecular free radical photoinitiators such as 2,2‐dimethoxy‐2‐phenylacetophenone also takes place readily. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号