首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the origin of the cooperative nature of spin crossover (SC) between low-spin and high-spin (HS) states from the viewpoint of elastic interactions among molecules. As the size of each molecule changes depending on its spin state, the elastic interaction among the lattice distortions provides the cooperative interaction of the spin states. We develop a simple model of SC with intra and intermolecular potentials which accounts for the elastic interaction including the effect of the inhomogeneity of the spin states and apply constant temperature molecular dynamics based on the Nosé-Hoover formalism. We demonstrate that, with increase of the strength of the intermolecular interactions, the temperature dependence of the HS component changes from a gradual crossover to a first-order transition.  相似文献   

2.
The possibility of ferromagnetic and antiferromagnetic phase transitions in symmetric nuclear matter is analyzed in Fermi liquid theory with the Skyrme effective interaction. The density dependence of the ferromagnetic and antiferromagnetic parameters of spin polarization at zero temperature is obtained for SkM* and SGII effective potentials. In the density region where both solutions of self-consistency equations exist, the ferromagnetic spin state is preferable over the antiferromagnetic spin state.  相似文献   

3.
The thermal- and photon-induced phase transitions of [Fe(2-pic) 3 ]Cl 2 EtOH from a high-spin (HS) state ( S = 2) to a low-spin (LS) state ( S = 0) were observed by X-ray Emission Spectroscopy (XES) and X-ray Absorption Spectroscopy (XAS). The spin state was observed with Fe 3p-1s XES from the HS and photon-induced (PI) phase took S = 2 and LS state took S = 0. Each spectrum of the decay process from the PI phase to the LS state could be described with the superposition of those of the HS and LS states. In XAS, a different spectrum was also observed in the HS and LS states, and likewise by XES; the difference in the pre-edge structure between the HS and LS states was explained based on the difference of Fe unoccupied 3d partial density of state calculated by the DV-X f method.  相似文献   

4.
The high-pressure induced phase transitions initiated by electronic transition in 3d ions from the high-spin (HS) to the low-spin (LS) state (HS-LS spin-crossover) are considered. Behavior of the system with d6 electronic configuration is investigated in the ground state of zero temperature and critical pressure Pc. Magnetic properties of the Mott–Hubbard insulator (Mg1−xFex)O are studied in the vicinity of the quantum critical point (T=0, Pc). At the critical pressure of spin crossover Pc, the spin gap energy εS between HS and LS states is zero. The quantum spins fluctuations HS⇔LS do not require any energy, and the antiferromagnetism is destroyed in the quantum critical point by the first order transition.  相似文献   

5.
The crystal structure, magnetic and electronic properties of SmFeO3 under hydrostatic pressure have been studied by first-principles calculations within the generalized gradient approximation plus Hubbard U (GGA + U). The iso-structural phase transition with spin, volume and band gap collapses can be induced by a large enough hydrostatic pressure. The high-spin (HS) state of Fe3+, with the magnetic moment of ~4 μB, is retained at low pressure. The spin crossover occurs at a transition pressure (~68 GPa) with the magnetic moment of Fe3+ decreasing to ~1 μB in low-spin (LS) state. Meanwhile, the reductions of cell volume (by ~?5.43%) and band gap (from >2 eV to ~1.6 eV) of SmFeO3 are obtained when the HS–LS transition happens. Finally, the critical pressure of HS–LS transition, magnetic and electronic properties are found to be Hubbard U dependent.  相似文献   

6.
N. UryÛ 《Phase Transitions》2013,86(1-4):133-175
Abstract

Following the Bogoliubov variational principle, the equilibrium and stability equations of the free energy for the two sublattice antiferromagnetic system with inter- and intrasublattice exchange interactions and with an external magnetic field are investigated. For the Ising spin system with uniaxial anisotropy, the phase diagrams have been calculated for various values of anisotropy constant d and the ratio of intra- to intersublattice interaction constants γ. It is shown that first-order, as well as second-order transitions, occur for γ > 0, whereas only a second-order transition occurs for γ ≦ 0, irrespective of the sign of d. Furthermore, similar calculations are extended for the anisotropic Heisenberg spin system and quite interesting phase diagrams have been obtained. Next, the effects of the anisotropic exchange interactions on the magnetic ordered states and the magnetizations of the singlet ground state system of spin one and with a uniaxial anisotropy term are investigated in the vicinity of the level crossing field H ? D/gμ B . A field-induced ordered state without the transverse component of magnetization is shown to appear in a certain range of magnetic field as the spin dimensionality decreases. It has also turned out that the phase transition between this ordered state and the canted antiferromagnetic state ordinarily found for the isotropic singlet ground state system is of first order. Lastly, the stable spin configurations at a temperature of absolute zero for a two-sublattice uniaxial antiferromagnet under an external magnetic field of arbitrary direction are studied. In particular, the effects of a single ionic anisotropy D-term and anisotropy in the exchange interactions on the magnetic phases are investigated. The antiferromagnetic state has turned out to appear only for the external magnetic field along the easy axis of sublattice magnetization, and makes a first-order phase transition to the canted-spin state or the ferromagnetic state. For other field directions, no antiferromagnetic state appears and only a second-order phase transition between the canted-spin and the ferromagnetic states occurs. The critical field as a function of external field direction has been calculated for several D-values.  相似文献   

7.
The magnetic and transport properties of the Cr-doped manganites La(0.46)Sr(0.54)Mn(1-y)Cr(y)O3 ( 0 < or = y < or = 0.08) with the A-type antiferromagnetic structure were investigated. Upon cooling, we find multiple magnetic phase transitions, i.e., paramagnetic, ferromagnetic (FM), antiferromagnetic (AFM), and spin glass in the y = 0.02 sample. The low temperature spin glass state is not a conventional spin glass with randomly oriented magnetic moments but has a reentrant character. The reentrant spin glass behavior accompanied by the anomalous multiple magnetic transitions might be due to the competing interactions between the FM phase and the A-type AFM matrix induced by the random Cr impurity.  相似文献   

8.
We study the finite temperature property of a model on two dimensional square lattices with two Ising spins at each lattice site by Monte Carlo simulations. When those Ising spins at a lattice site are parallel the site is said to be in the high-spin state (HS), while when they are antiparallel the site is said to be in the low-spin state (LS). Throughout the study, the energy of HS is presumed to be higher than that of LS. Two Ising spins at each site are added to form a total spin, which interacts with its nearest neighbour total spins via spin-spin couplings. The spin-phonon coupling also is introduced via harmonic springs between nearest neighbour sites with spring constants and equilibrium distances depending on the spin states of the sites involved. In this system, we investigate the feature of transitions between LS and HS (to be called low/high spin transition (LHST)) by varying the temperature. As for the ferromagnetic interaction between total spins, the second order phase transition: pure HSmixed state of HS and LS is possible to occur in a pure spin system, as is expected from mean field calculations. The role of lattice distortions by the change of lattice spacings is shown to be essential for LHST: pure LS(pure)HS. In the model investigated, there appears an indication of the strong first order phase transition which reveals a conspicuous hysteresis.  相似文献   

9.
Phase transitions in the three-dimensional diluted Ising antiferromagnet in an applied magnetic field are analyzed numerically. It is found that random magnetic field in a system with spin concentration below a certain threshold induces a crossover from second-order phase transition to first-order transition to a new phase characterized by a spin-glass ground state and metastable energy states at finite temperatures.  相似文献   

10.
The magnetic properties of the α-Fe2O3 hematite at a high hydrostatic pressure have been studied by synchrotron Mössbauer spectroscopy (nuclear forward scattering (NFS)) on iron nuclei. Time-domain NFS spectra of hematite have been measured in a diamond anvil cell in the pressure range of 0–72 GPa and the temperature range of 36–300 K in order to study the magnetic properties at a phase transition near a critical pressure of ~50 GPa. In addition, Raman spectra at room temperature have been studied in the pressure range of 0–77 GPa. Neon has been used as a pressure-transmitting medium. The appearance of an intermediate electronic state has been revealed at a pressure of ~48 GPa. This state is probably related to the spin crossover in Fe3+ ions at their transition from the high-spin state (HS, S = 5/2) to a low-spin one (LS, S = 1/2). It has been found that the transient pressure range of the HS–LS crossover is extended from 48 to 55 GPa and is almost independent of the temperature. This surprising result differs fundamentally from other cases of the spin crossover in Fe3+ ions observed in other crystals based on iron oxides. The transition region of spin crossover appears because of thermal fluctuations between HS and LS states in the critical pressure range and is significantly narrowed at cooling because of the suppression of thermal excitations. The magnetic PT phase diagram of α-Fe2O3 at high pressures and low temperatures in the spin crossover region has been constructed according to the results of measurements.  相似文献   

11.
The exact numerical diagonalization and thermodynamics in an ensemble of small Hubbard clusters in the ground state and finite temperatures reveal intriguing insights into the nascent charge and spin pairings, Bose condensation and ferromagnetism in nanoclusters. The phase diagram off half filling strongly suggests the existence of quantum critical points and subsequent transitions from electron pairing into unsaturated and saturated ferromagnetic Mott–Hubbard like insulators, driven by electron repulsion. Rigorous criteria for the existence of quantum critical points and crossover temperatures are formulated. The phase diagram for 2×42×4-site clusters illustrates how these features are scaled with cluster size. The phase separation and electron pairing, monitored by a magnetic field and electron doping, surprisingly resemble phase diagrams in the family of doped high-TcTc cuprates.  相似文献   

12.
Ferromagnetic ↔ antiferromagnetic phase transitions for one-dimensional systems are investigated using the Monte Carlo technique. Ground state diagrams are constructed within the framework of the Ising model. Using the Metropolis algorithm, the effects of external magnetic field and temperature variations on phase transitions are examined. Kinetic features of these transitions are included into consideration. It is shown that the correlational length coefficient v for ferromagnetic materials decreases with increase in the external magnetic field strength, while for antiferromagnetic this dependence is reverse. Behavior of the critical dynamic coefficient z under field variations for small one-dimensional magnetic is similar to that of coefficient v. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp.54–58, March, 2006.  相似文献   

13.
The crystal structure and magnetic properties of the Nd(Mn?xCrx)O3 system (x≤0.85) have been studied. Substitution of chromium for manganese was shown to induce a transition from the antiferromagnetic to ferromagnetic state (x≈0.2) and a decrease in the critical temperature followed, conversely, by an increase in the Néel temperature and decay of spontaneous magnetization. At low temperatures, the magnetization was found to behave anomalously as a result of magnetic interaction between the ferromagnetic and antiferromagnetic phases. The formation of the ferromagnetic phase is attributed to destruction of cooperative static orbital ordering, while the coexistence of different magnetic phases is most probably due to internal chemical inhomogeneity of the solid solutions.  相似文献   

14.
The influence of spin fluctuations on the magnetic properties of the ferromagnetic helimagnet MnSi has been studied in the Hubbard model taking into account the antisymmetric relativistic Dzyaloshinskii–Moriya interaction for band electrons. The obtained equations of the magnetic state indicate the correlation between the fine structure of the density of electronic states and the magnetization and coefficient of mode–mode coupling. It has been shown that the position of the Fermi energy in the immediate proximity on the point of the local minimum of the density of electronic states leads to large zero spin fluctuations at low magnetization of the helimagnet. When approaching from down the Néel point (approximately, at 0.9TN), the zero fluctuation disappear, and the temperature rise of thermal spin fluctuation is accompanied by the change in the sign of the coefficient of mode–mode coupling. A magnetic field perpendicular to the helicoids plane brings about the formation and subsequent “collapse” of the helimagnetic cone. However, the condition of the change in the sign of the coefficient of mode–mode coupling divides the MnSi phase diagram into two parts, one of which corresponds to the ferromagnetic state induced by the field, and the other corresponding to the paramagnetic state. In this case, the h–T diagram has a specific region, inside which the paramagnetic and the ferromagnetic state are instable. The boundaries of the region agree with the experimental data on the boundaries of the anomalous phase (a phase). It has been found that the results of calculations of the temperature dependence of the magnetic susceptibility agree with the experimental data.  相似文献   

15.
We review experimental results which show the occurrence of a new class of cooperative photo-effect so called as photo-induced phase transition (PIPT) in metal-organic hybrid system. We focus on the photo-induced spin state phase transition in spin crossover complex, and report the dynamic behavior and magnetic field effect on it. Obtained results demonstrate that cooperative spin-lattice interaction in crystal plays a key role for driving PIPT phenomena in spin crossover complexes.  相似文献   

16.
The possibility of ferromagnetic (FM) and antiferromagnetic (AFM) phase transitions in symmetric nuclear matter is analyzed within the framework of a Fermi liquid theory with effective Gogny interaction. It is shown that, at some critical density, nuclear matter with the D1S effective force undergoes a phase transition to the AFM spin state (opposite directions of neutron and proton spins). The self-consistent equations of spin-polarized nuclear matter with the D1S force have no solutions corresponding to FM spin ordering (the same direction of neutron and proton spins) and, hence, the FM transition does not appear. The AFM spin polarization parameter is found for zero and finite temperature. It is shown that the AFM spin polarization parameter of partially polarized nuclear matter at low enough temperatures increases with temperature. The entropy of the AFM spin state for some temperature range is larger than the entropy of the normal state. Nevertheless, the free energy of the AFM spin state is always less than the free energy of the normal state, and the AFM spin-polarized state is preferable for all temperatures below the critical temperature. The text was submitted by the authors in English.  相似文献   

17.
In this paper we have analytically and numerically studied the dynamics of spin crossover induced by time-dependent pressure. We show that quasi static pressure, with a slow dependence on time, yields a spin crossover leading to transition from the high spin (HS) quantum system state to the low spin (LS) state. However, quench dynamics under shockwave load are more complicated. The final state of the system depends on the amplitude and pulse velocity, resulting in the mixture of the HS and LS states.  相似文献   

18.
采用自旋波的理论研究反铁磁层间耦合强度和不同自旋值对铁磁—反铁磁双层系统磁性质的影响,在层间反铁磁耦合情况下.得出了不同自旋值时每层子晶格交叉点的温度,在低温下表现出量子效应。  相似文献   

19.
We study the magnetic states and phase transitions in layered triangular antiferromagnets and show that in compounds of the VBr2 (or VCl2) type the quantum effects alter the structure of the ground state and initiate a series of transitions as the magnetic field strength is increased. We establish that planar structures with different spin configurations are realized when the magnetic field strength is far from the saturation value, while a nonplanar structure of the umbrella type is realized in fields close to the saturation value. Finally, we build the phase diagram of the ground state and indicate a finite range of field strengths where a collinear phase is possible, too. Zh. éksp. Teor. Fiz. 111, 627–643 (February 1997)  相似文献   

20.
The characteristic features of phase transitions induced by an external magnetic field and of the corresponding changes in the relative orientations of the spins in the ferromagnetic CoNiCu layers of a multilayer film, which are coupled by an antiferromagnetic exchange interaction via nonmagnetic Cu interlayers, are studied using a magnetooptic method for visualizing the fringing fields. It is established that the magnetization reversal process in this nanocomposite material proceeds by a spin-flop orientational phase transition on account of the formation and motion of specific domain walls as well as by incoherent rotation of the spins toward the applied field. It is shown that, depending on the direction of the external magnetic field with respect to the easy axis, asymmetric canted phases also arise as a result of such transitions. Pis’ma Zh. Tekh. Fiz. 64, No. 11, 778–782 (10 December 1996)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号