首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive amine-responsive disassembly of self-assembled AuI-CuI double salts was observed and its utilization for the synergistic catalysis was enlightened. Investigation of the disassembly of [Au(NHC)2][CuI2] revealed the contribution of Cu-assisted ligand exchange of N-heterocyclic carbene (NHC) by amine in [Au(NHC)2]+ and the capacity of [CuI2] on the oxidative step. By integrating the implicative information coded in the responsive behavior and inherent catalytic functions of d10 metal complexes, a catalyst for the oxidative carbonylation of amines was developed. The advantages of this method were clearly reflected on mild reaction conditions and the significantly expanded scope (51 examples); both primary and steric secondary amines can be employed as substrates. The cooperative reactivity from Au and Cu centers, as an indispensable prerequisite for the excellent catalytic performance, was validated in the synthesis of (un)symmetric ureas and carbamates.  相似文献   

2.
A total of 35 [Au(NHC)2][MX2] (NHC=N‐heterocyclic carbene; M=Au or Cu; X=halide, cyanide or arylacetylide) complex salts were synthesized by co‐precipitation of [Au(NHC)2]+ cations and [MX2]? anions. These salts contain crystallographically determined polymeric Au???Au or Au???Cu interactions and are highly phosphorescent with quantum yields up to unity and emission color tunable in the entire visible regions. The nature of the emissive excited states is generally assigned to ligand (anion)‐to‐ligand (cation) charge‐transfer transitions assisted by d10???d10 metallophilicity. The emission properties can be further tuned by controlled triple‐component co‐crystallization or by epitaxial growth. Correct recipes for white light‐emitting phosphors with quantum yields higher than 70 % have been achieved by screening the combinatorial pool.  相似文献   

3.
The reaction of 2,2′‐Bis(2N‐(1,1′,3,3′‐tetramethyl‐guanidino))diphenylene‐amine (TMG2PA) ( 1 ) with CuI in MeCN results in the formation of [CuII(TMG2PAamid)I] ( 2 ) indicatingthat CuI is the target of an oxidative attack of the N‐H proton of the ligand which itself is converted to molecular hydrogen. In contrast, if [Cu(MeCN)4][PF6] is used as the CuI source, [CuI2(TMGbenz)2][PF6]2 ( 3 ) is obtained instead. The use of the non‐coordinating counterion [PF6] apparently prevents CuI from oxidation but induces itself a cyclisation reaction within the ligand which results in the formation of a benzimidazole‐guanidine ligand.  相似文献   

4.
于杰辉  韩力等 《中国化学》2002,20(9):851-857
The hydrothermal reactions of CuI,KI and bidentate amines [1,10-phenanthroline(phen) or ethylenediamine (en)]gave the three copper (Ⅰ)halide compounds,Cu3I3(phen)2(1),CuI(phen)2(2) and [Cu(en)2][CuI2](3),which were struc-turally characterized via single-crystal X-ray diffraction stud-ies,Hydrogen bonds and π-π interactions are the most remarkable structural features of the title compounds .All can be described as higher-dimensional supramolecular compounds connected via these secondary bondings,Moreover,the title compounds were characterized by elemental analyses,IR spectra and TGA analyses,The third-order non-linear optical properties of the title compounds were also investigated and all exhibit nicer non-linear absorption and self-focusing performance.  相似文献   

5.
The aurophilicity exhibited by AuI complexes depends strongly on the nature of the supporting ligands present and the length of the Au–element (Au—E) bond may be used as a measure of the donor–acceptor properties of the coordinated ligands. A binuclear iron–gold complex, [1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene‐2κC2]dicarbonyl‐1κ2C‐(1η5‐cyclopentadienyl)gold(I)iron(II)(AuFe) benzene trisolvate, [AuFe(C5H5)(C27H36N2)(CO)2]·3C6H6, was prepared by reaction of K[CpFe(CO)2] (Cp is cyclopentadienyl) with (NHC)AuCl [NHC = 1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene]. In addition to the binuclear complex, the asymmetric unit contains three benzene solvent molecules. This is the first example of a two‐coordinated Au atom bonded to an Fe and a C atom of an N‐heterocyclic carbene.  相似文献   

6.
A general regioselective rhodium‐catalyzed head‐to‐tail dimerization of terminal alkynes is presented. The presence of a pyridine ligand (py) in a Rh–N‐heterocyclic‐carbene (NHC) catalytic system not only dramatically switches the chemoselectivity from alkyne cyclotrimerization to dimerization but also enhances the catalytic activity. Several intermediates have been detected in the catalytic process, including the π‐alkyne‐coordinated RhI species [RhCl(NHC)(η2‐HC?CCH2Ph)(py)] ( 3 ) and [RhCl(NHC){η2‐C(tBu)?C(E)CH?CHtBu}(py)] ( 4 ) and the RhIII–hydride–alkynyl species [RhClH{? C?CSi(Me)3}(IPr)(py)2] ( 5 ). Computational DFT studies reveal an operational mechanism consisting of sequential alkyne C? H oxidative addition, alkyne insertion, and reductive elimination. A 2,1‐hydrometalation of the alkyne is the more favorable pathway in accordance with a head‐to‐tail selectivity.  相似文献   

7.
Strategies for the synthesis of highly electrophilic AuI complexes from either hydride‐ or chloride‐containing precursors have been investigated by employing sterically encumbered Dipp‐substituted expanded‐ring NHCs (Dipp=2,6‐iPr2C6H3). Thus, complexes of the type (NHC)AuH have been synthesised (for NHC=6‐Dipp or 7‐Dipp) and shown to feature significantly more electron‐rich hydrides than those based on ancillary imidazolylidene donors. This finding is consistent with the stronger σ‐donor character of these NHCs, and allows for protonation of the hydride ligand. Such chemistry leads to the loss of dihydrogen and to the trapping of the [(NHC)Au]+ fragment within a dinuclear gold cation containing a bridging hydride. Activation of the hydride ligand in (NHC)AuH by B(C6F5)3, by contrast, generates a species (at low temperatures) featuring a [HB(C6F5)3]? fragment with spectroscopic signatures similar to the “free” borate anion. Subsequent rearrangement involves B?C bond cleavage and aryl transfer to the carbophilic metal centre. Under halide abstraction conditions utilizing Na[BArf4] (Arf=C6H3(CF3)2‐3,5), systems of the type [(NHC)AuCl] (NHC=6‐Dipp or 7‐Dipp) generate dinuclear complexes [{(NHC)Au}2(μ‐Cl)]+ that are still electrophilic enough at gold to induce aryl abstraction from the [BArf4]? counterion.  相似文献   

8.
A series of new iridium(III) complexes containing bidentate N‐heterocyclic carbenes (NHC) functionalized with an alcohol or ether group (NHC? OR, R=H, Me) were prepared. The complexes catalyzed the alkylation of anilines with alcohols as latent electrophiles. In particular, biscationic IrIII complexes of the type [Cp*(NHC‐OH)Ir(MeCN)]2+2[BF4?] afforded higher‐order amine products with very high efficiency; up to >99 % yield using a 1:1 ratio of reactants and 1–2.5 mol % of Ir, in short reaction times (2–16 h) and under base‐free conditions. Quantitative yields were also obtained at 50 °C, although longer reaction times (48–60 h) were needed. A large variety of aromatic amines have been alkylated with primary and secondary alcohols. The reactivity of structurally related iridium(III) complexes was also compared to obtain insights into the mechanism and into the structure of possible catalytic intermediates. The IrIII complexes were stable towards oxygen and moisture, and were characterized by NMR, HRMS, single‐crystal X‐ray diffraction, and elemental analyses.  相似文献   

9.
The N‐heterocyclic carbene–ytterbium(II) amides (NHC)2Yb[N(SiMe3)2]2 ( 1 : NHC: 1,3,4,5‐tetramethylimidazo‐2‐ylidene (IMe4); 2 : NHC: 1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene (IiPr)) and the NHC‐stabilized rare‐earth phosphide (IMe4)3Yb(PPh2)2 ( 3 ) have been synthesized and fully characterized. Complexes 1 – 3 are active precatalysts for the hydrophosphination of alkenes, alkynes, and dienes and exhibited much superior catalytic activity to that of the NHC‐free amide (THF)2Yb[N(SiMe)2]2. Complex 1 is the most active precursor among the three complexes. In particular, complex 1 can be recycled and recovered from the reaction media after the catalytic reactions. Furthermore, it was found that complex 3 could catalyze the polymerization of styrene to yield atactic polystyrenes with low molecular weights. To the best of our knowledge, complex 1 represents the first rare‐earth complex that can be recovered after catalytic reactions.  相似文献   

10.
Presented herein is a set of bimetallic and trimetallic “coordination booster‐catalyst” assemblies in which the coordination complexes [RuII(terpy)2] and [OsII(terpy)2] acted as boosters for enhancement of the catalytic activity of [RuII(NHC)(para‐cymene)]‐based catalytic site. The boosters accelerated the oxidative loss of para‐cymene from the catalytic site to generate the active catalyst during the oxidation of alkenes and alkynes into corresponding aldehydes, ketones and diketones. It was found that the boosting efficiency of the [OsII(terpy)2] units was considerably higher than its congener [RuII(terpy)2] unit in these assemblies. Mechanistic studies were conducted to understand this unique improvement.  相似文献   

11.
Materials exhibiting excitation wavelength‐dependent photoluminescence (Ex‐De PL) in the visible region have potential applications in bioimaging, optoelectronics and anti‐counterfeiting. Two multifunctional, chiral [Au(NHC)2][Au(CN)2] (NHC=(4R,5R)/(4S,5S)‐1,3‐dimethyl‐4,5‐diphenyl‐4,5‐dihydro‐imidazolin‐2‐ylidene) complex double salts display Ex‐De circularly polarized luminescence (CPL) in doped polymer films and in ground powder. Emission maxima can be dynamically tuned from 440 to 530 nm by changing the excitation wavelength. The continuously tunable photoluminescence is proposed to originate from multiple emissive excited states as a result of the existence of varied AuI???AuI distances in ground state. The steric properties of the NHC ligand are crucial to the tuning of AuI???AuI distances. An anti‐counterfeiting application using these two salts is demonstrated.  相似文献   

12.
A general synthetic route was used to prepare 15 new N‐heterocyclic carbene (NHC)–AgI complexes bearing anionic carboxylate ligands [Ag(NHC)(O2CR)], including a homologous series of complexes of sterically flexible ITent ligands, which permit a systematic spectroscopic and theoretical study of the structural and electronic features of these compounds. The complexes displayed a significant ligand‐accelerated effect in the intramolecular cyclisation of propargylic amides to oxazolidines. The substrate scope is highly complementary to that previously achieved by NHC–Au and pyridyl–AgI complexes.  相似文献   

13.
A comparative study on the catalytic activity of a series of [IrCl2Cp*(NHC)] complexes in several C–O and C–N coupling processes implying hydrogen‐borrowing mechanisms has been performed. The compound [IrCl2Cp*(InBu)] (Cp*=pentamethyl cyclopentadiene; InBu=1,3‐di‐n‐butylimidazolylidene) showed to be highly effective in the cross‐coupling reactions of amines and alcohols, providing high yields in the production of unsymmetrical ethers and N‐alkylated amines. A remarkable feature is that the processes were carried out in the absence of base, phosphine, or any other external additive. A comparative study with other known catalysts, such as Shvo's catalyst, is also reported.  相似文献   

14.
The behavior of N‐heterocyclic carbene (NHC) ligands in organometallic chemistry is hugely important for catalysis, due to the effect of these ligands on catalytic pathways and their involvement in catalyst decomposition. In this report, a combined experimental and computational study is presented, which provides mechanistic understanding of the unprecedented oxidative coupling of NHCs at Cu. The presence of CuI–, CuII–, and CuIII–NHC complexes during the process is postulated, with the unusual Ccarbene–Ccarbene oxidative coupling reaction occurring under extremely mild reaction conditions. This process may represent a novel pathway for the decomposition of Cu–NHC complexes.  相似文献   

15.
The synthesis and characterisation of a series of new Rh and Au complexes bearing 1,2,4‐triazol‐3‐ylidenes with a N‐2,4‐dinitrophenyl (N‐DNP) substituent are described. IR, NMR, single‐crystal X‐ray diffraction and computational analyses of the Rh complexes revealed that the N‐heterocyclic carbenes (NHCs) behaved as strong π acceptors and weak σ donors. In particular, a natural bond orbital (NBO) analysis revealed that the contributions of the Rh→Ccarbene π backbonding interaction energies (ΔEbb) to the bond dissociation energies (BDE) of the Rh? Ccarbene bond for [RhCl(NHC)(cod)] (cod=1,5‐cyclooctadiene) reached up to 63 %. The Au complex exhibited superior catalytic activity in the intermolecular hydroalkoxylation of cyclohexene with 2‐methoxyethanol. The NBO analysis suggested that the high catalytic activity of the AuI complex resulted from the enhanced π acidity of the Au atom.  相似文献   

16.
The N‐heterocyclic carbene (NHC) adducts Zn(CpR)2(NHC)] (CpR=C5HMe4, C5H4SiMe3; NHC=ItBu, IDipp (Dipp=2,6‐diisopropylphenyl), IMes (Mes=mesityl), SIMes) were prepared and shown to be active catalysts for the hydrogenation of imines, whereas decamethylzincocene [ZnCp*2] is highly active for the hydrogenation of ketones in the presence of noncoordinating NHCs. The abnormal carbene complex [Zn(OCHPh2)2(aItBu)]2 was formed from spontaneous rearrangement of the ItBu ligand during incomplete hydrogenation of benzophenone. Two isolated ZnI adducts [Zn2Cp*2(NHC)] (NHC=ItBu, SIMes) are presented and characterized as weak adducts on the basis of 13C NMR spectroscopic and X‐ray diffraction experiments. A mechanistic proposal for the reduction of [ZnCp*2] with H2 to give [Zn2Cp*2] is discussed.  相似文献   

17.
The trapping of a silicon(I) radical with N‐heterocyclic carbenes is described. The reaction of the cyclic (alkyl)(amino) carbene [cAACMe] (cAACMe=:C(CMe2)2(CH2)NAr, Ar=2,6‐i Pr2C6H3) with H2SiI2 in a 3:1 molar ratio in DME afforded a mixture of the separated ion pair [(cAACMe)2Si:.]+I ( 1 ), which features a cationic cAAC–silicon(I) radical, and [cAACMe−H]+I. In addition, the reaction of the NHC–iodosilicon(I) dimer [IAr(I)Si:]2 (IAr=:C{N(Ar)CH}2) with 4 equiv of IMe (:C{N(Me)CMe}2), which proceeded through the formation of a silicon(I) radical intermediate, afforded [(IMe)2SiH]+I ( 2 ) comprising the first NHC–parent‐silyliumylidene cation. Its further reaction with fluorobenzene afforded the CAr−H bond activation product [1‐F‐2‐IMe‐C6H4]+I ( 3 ). The isolation of 2 and 3 confirmed the reaction mechanism for the formation of 1 . Compounds 1 – 3 were analyzed by EPR and NMR spectroscopy, DFT calculations, and X‐ray crystallography.  相似文献   

18.
White‐light emitters have attracted considerable attention due to their importance in current and future technologies. By incorporating molecular fragments that independently emit in the blue, green/yellow, and red visible regions, specifically Cu‐NC, Au???Au interactions, and Cu‐SR2, respectively, into a single material, new white‐light‐emitting systems have been targeted. With this goal, three new CuI/thioether‐based coordination polymers containing bridging [Au(CN)2]? units have been synthesized and structurally characterized, and their photoluminescence properties (at room and low temperatures) have been delineated. Using this approach, white‐light emission (tunable from slightly yellow to slightly blue, depending on λex) is generated from Cu(Me2S)[Au(CN)2], a feature uncommon in such simple coordination compounds.  相似文献   

19.
In contrast to cyclic π‐conjugated hydrocarbons, the coordination chemistry of inorganic heterocycles is less developed. Dicarbondiphosphides stabilized by N‐heterocyclic carbenes (NHCs) NHC→C2P2←NHC ( 1 a , b ) (NHC=IPr or SIPr) contain a four‐membered C2P2 ring with an aromatic 6π‐electron configuration. These heterocycles coordinate to a variety of complex fragments with metals from groups 6, 9, and 10, namely [M0(CO)3] (M=Cr, Mo), [CoI(CO)2]+, or [NiIIBr2], through an η4‐coordination mode, leading to complexes 2 a , b , 3 a , b , 5 a , b , and 6 a , b , respectively. These complexes were characterized by X‐ray diffraction methods using single crystals, IR spectroscopy, and DFT calculations. In combination these methods indicate that 1 a , b behave as exceptionally strong 6π‐electron donors.  相似文献   

20.
The dinuclear Pt–Au complex [(CNC)(PPh3)Pt Au(PPh3)](ClO4) ( 2 ) (CNC=2,6‐diphenylpyridinate) was prepared. Its crystal structure shows a rare metal–metal bonding situation, with very short Pt–Au and Au–Cipso(CNC) distances and dissimilar Pt–Cipso(CNC) bonds. Multinuclear NMR spectra of 2 show the persistence of the Pt–Au bond in solution and the occurrence of unusual fluxional behavior involving the [PtII] and [AuI] metal fragments. The [PtII]??? [AuI] interaction has been thoroughly studied by means of DFT calculations. The observed bonding situation in 2 can be regarded as a model for an intermediate in a transmetalation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号