首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, the DNA brick strategy has provided a highly modular and scalable approach for the construction of complex structures, which can be used as nanoscale pegboards for the precise organization of molecules and nanoparticles for many applications. Despite the dramatic increase of structural complexity provided by the DNA brick method, the assembly pathways are still poorly understood. Herein, we introduce a “seed” strand to control the crucial nucleation and assembly pathway in DNA brick assembly. Through experimental studies and computer simulations, we successfully demonstrate that the regulation of the assembly pathways through seeded growth can accelerate the assembly kinetics and increase the optimal temperature by circa 4–7 °C for isothermal assembly. By improving our understanding of the assembly pathways, we provide new guidelines for the design of programmable pathways to improve the self-assembly of DNA nanostructures.  相似文献   

2.
Supramolecular chemistry is moving into a direction in which the composition of a chemical equilibrium is no longer determined by thermodynamics but by the efficiency with which kinetic states can be populated by energy consuming processes. Herein, we show that DNA is ideally suited for programming chemically fueled dissipative self‐assembly processes. Advantages of the DNA‐based systems presented in this study include a perfect control over the activation site for the chemical fuel in terms of selectivity and affinity, highly selective fuel consumption that occurs exclusively in the activated complex, and a high tolerance for the presence of waste products. Finally, it is shown that chemical fuels can be used to selectively activate different functions in a system of higher complexity embedded with multiple response pathways.  相似文献   

3.
刘冬生 《高分子科学》2017,35(10):1307-1314
In recent years,DNA supramolecular hydrogels have attracted much attention due to their injectability,biocompatibility,responsiveness and self-healing properties.In this work,we designed a linear DNA brick containing one duplex with two cytosine (C)-rich sequence on both ends.This brick can first assemble to form duplex under pH 8 condition.After adjusting the pH to 5,the C-rich sequence tends to form intermolecular i-motif structure,which joins the linear DNA molecules together to form interlocked cyclic structures and yield the DNA hydrogel.By adjusting the length and bending curvature of the duplex part of the molecule,one can change the basic unit of the hydrogel structure to tune the properties of the DNA hydrogel.  相似文献   

4.
A strategy of structural transformation for the assembly of DNA nanocages that can not be assembled directly is described. In this strategy, a precursor DNA nanocage is assembled first and then is isothermally transformed into a desired, complicated nanocage. A dramatic, conformational change accompanies the transformation. This strategy has been proven to be successful by native polyacrylamide gel electrophoresis (PAGE) and cryogenic electron microscopy (cryoEM) imaging. We expect that the strategy of structural transformation will be useful for the assembly of many otherwise inaccessible DNA nanostructures and help to increase the structural complexity of DNA nanocages.  相似文献   

5.
Mechanically interlocked supramolecular assemblies are appealing building blocks for creating functional nanodevices. Herein, we describe the multistep assembly of large DNA origami rotaxanes that are capable of programmable structural switching. We validated the topology and structural integrity of these rotaxanes by analyzing the intermediate and final products of various assembly routes by electrophoresis and electron microscopy. We further analyzed two structure‐switching behaviors of our rotaxanes, which are both mediated by DNA hybridization. In the first mechanism, the translational motion of the macrocycle can be triggered or halted at either terminus. In the second mechanism, the macrocycle can be elongated after completion of the rotaxane assembly, giving rise to a unique structure that is otherwise difficult to access.  相似文献   

6.
The use of DNA‐based nanomaterials in biomedical applications is continuing to grow, yet more emphasis is being put on the need for guaranteed structural stability of DNA nanostructures in physiological conditions. Various methods have been developed to stabilize DNA origami against low concentrations of divalent cations and the presence of nucleases. However, existing strategies typically require the complete encapsulation of nanostructures, which makes accessing the encased DNA strands difficult, or chemical modification, such as covalent crosslinking of DNA strands. We present a stabilization method involving the synthesis of DNA brick nanostructures with dendritic oligonucleotides attached to the outer surface. We find that nanostructures assembled from DNA brick motifs remain stable against denaturation without any chemical modifications. Furthermore, densely coating the outer surface of DNA brick nanostructures with dendritic oligonucleotides prevents nuclease digestion.  相似文献   

7.
DNA origami is a widely used method for fabrication of custom‐shaped nanostructures. However, to utilize such structures, one needs to controllably position them on nanoscale. Here we demonstrate how different types of 3D scaffolded multilayer origamis can be accurately anchored to lithographically fabricated nanoelectrodes on a silicon dioxide substrate by DEP. Straight brick‐like origami structures, constructed both in square (SQL) and honeycomb lattices, as well as curved “C”‐shaped and angular “L”‐shaped origamis were trapped with nanoscale precision and single‐structure accuracy. We show that the positioning and immobilization of all these structures can be realized with or without thiol‐linkers. In general, structural deformations of the origami during the DEP trapping are highly dependent on the shape and the construction of the structure. The SQL brick turned out to be the most robust structure under the high DEP forces, and accordingly, its single‐structure trapping yield was also highest. In addition, the electrical conductivity of single immobilized plain brick‐like structures was characterized. The electrical measurements revealed that the conductivity is negligible (insulating behavior). However, we observed that the trapping process of the SQL brick equipped with thiol‐linkers tended to induce an etched “nanocanyon” in the silicon dioxide substrate. The nanocanyon was formed exactly between the electrodes, that is, at the location of the DEP‐trapped origami. The results show that the demonstrated DEP‐trapping technique can be readily exploited in assembling and arranging complex multilayered origami geometries. In addition, DNA origamis could be utilized in DEP‐assisted deformation of the substrates onto which they are attached.  相似文献   

8.
DNA self‐assembly allows the construction of nanometre‐scale structures and devices. Structures with thousands of unique components are routinely assembled in good yield. Experimental progress has been rapid, based largely on empirical design rules. Herein, we demonstrate a DNA origami technique designed as a model system with which to explore the mechanism of assembly. The origami fold is controlled through single‐stranded loops embedded in a double‐stranded DNA template and is programmed by a set of double‐stranded linkers that specify pairwise interactions between loop sequences. Assembly is via T‐junctions formed by hybridization of single‐stranded overhangs on the linkers with the loops. The sequence of loops on the template and the set of interaction rules embodied in the linkers can be reconfigured with ease. We show that a set of just two interaction rules can be used to assemble simple T‐junction origami motifs and that assembly can be performed at room temperature.  相似文献   

9.
pH‐responsiveness has been widely pursued in dynamic DNA nanotechnology, owing to its potential in biosensing, controlled release, and nanomachinery. pH‐triggering systems mostly depend on specific designs of DNA sequences. However, sequence‐independent regulation could provide a more general tool to achieve pH‐responsive DNA assembly, which has yet to be developed. Herein, we propose a mechanism for dynamic DNA assembly by utilizing ethylenediamine (EN) as a reversibly chargeable (via protonation) molecule to overcome electrostatic repulsions. This strategy provides a universal pH‐responsivity for DNA assembly since the regulation originates from externally co‐existing EN rather than specific DNA sequences. Furthermore, it endows structural DNA nanotechnology with the benefits of a metal‐ion‐free environment including nuclease resistance. The concept could in principle be expanded to other organic molecules which may bring unique controls to dynamic DNA assembly.  相似文献   

10.
Herein, we report a strategy for the synchronization of two self‐assembly processes to assemble stimulus‐responsive DNA nanostructures under isothermal conditions. We hypothesized that two independent assembly processes, when brought into proximity in space, could be synchronized and would exhibit positive synergy. To demonstrate this strategy, we assembled a ladderlike DNA nanostructure and a ringlike DNA nanostructure through two hybridization chain reactions (HCRs) and an HCR in combination with T‐junction cohesion, respectively. Such proximity‐induced synchronization adds a new element to the tool box of DNA nanotechnology. We believe that it will be a useful approach for the assembly of complex and responsive nanostructures.  相似文献   

11.
DNA self-assembly allows the construction of nanometre-scale structures and devices. Structures with thousands of unique components are routinely assembled in good yield. Experimental progress has been rapid, based largely on empirical design rules. Herein, we demonstrate a DNA origami technique designed as a model system with which to explore the mechanism of assembly. The origami fold is controlled through single-stranded loops embedded in a double-stranded DNA template and is programmed by a set of double-stranded linkers that specify pairwise interactions between loop sequences. Assembly is via T-junctions formed by hybridization of single-stranded overhangs on the linkers with the loops. The sequence of loops on the template and the set of interaction rules embodied in the linkers can be reconfigured with ease. We show that a set of just two interaction rules can be used to assemble simple T-junction origami motifs and that assembly can be performed at room temperature.  相似文献   

12.
There is immense demand for complex nanoarchitectures based on graphene nanostructures in the fields of biosensing or nanoelectronics. DNA molecules represent the most versatile and programmable recognition element and can provide a unique massive parallel assembly strategy with graphene nanomaterials. Here we demonstrate a facile strategy for covalent linking of single stranded DNA (ssDNA) to graphene using carbodiimide chemistry and apply it to genosensing. Since graphenes can be prepared by different methods and can contain various oxygen containing groups, we thoroughly investigated the utility of four different chemically modified graphenes for functionalization by ssDNA. The materials were characterized in detail and the different DNA functionalized graphene platforms were then employed for the detection of DNA hybridization and DNA polymorphism by using impedimetric methods. We believe that our findings are very important for the development of novel devices that can be used as alternatives to classical techniques for sensitive and fast DNA analysis. In addition, covalent functionalization of graphene with ssDNA is expected to have broad implications, from biosensing to nanoelectronics and directed, DNA programmable, self-assembly.  相似文献   

13.
The design of controllable dynamic systems is vital for the construction of organelle-like architectures in living cells, but has proven difficult due to the lack of control over defined topological transformation of self-assembled structures. Herein, we report a DNA based dynamic assembly system that achieves lysosomal acidic microenvironment specifically inducing topological transformation from nanoparticles to organelle-like hydrogel architecture in living cells. Designer DNA nanoparticles are constructed from double-stranded DNA with cytosine-rich stick ends (C-monomer) and are internalized into cells through lysosomal pathway. The lysosomal acidic microenvironment can activate the assembly of DNA monomers, inducing transformation from nanoparticles to micro-sized organelle-like hydrogel which could further escape into cytoplasm. We show how the hydrogel regulates cellular behaviors: cytoskeleton is deformed, cell tentacles are significantly shortened, and cell migration is promoted.  相似文献   

14.
Programmable assembly of gold nanoparticle superstructures with precise spatial arrangement has drawn much attention for their unique characteristics in plasmonics and biomedicine. Bio-inspired methods have already provided programmable, molecular approaches to direct AuNP assemblies using biopolymers. The existing methods, however, predominantly use DNA as scaffolds to directly guide the AuNP interactions to produce intended superstructures. New paradigms for regulating AuNP assembly will greatly enrich the toolbox for DNA-directed AuNP manipulation and fabrication. Here, we developed a strategy of using a spatially programmable enzymatic nanorobot arm to modulate anisotropic DNA surface modifications and assembly of AuNPs. Through spatial controls of the proximity of the reactants, the locations of the modifications were precisely regulated. We demonstrated the control of the modifications on a single 15 nm AuNP, as well as on a rectangular DNA origami platform, to direct unique anisotropic AuNP assemblies. This method adds an alternative enzymatic manipulation to DNA-directed AuNP superstructure assembly.  相似文献   

15.
DNA is an ideal molecule for the construction of 3D crystals with tunable properties owing to its high programmability based on canonical Watson–Crick base pairing, with crystal assembly in all three dimensions facilitated by immobile Holliday junctions and sticky end cohesion. Despite the promise of these systems, only a handful of unique crystal scaffolds have been reported. Herein, we describe a new crystal system with a repeating sequence that mediates the assembly of a 3D scaffold via a series of Holliday junctions linked together with complementary sticky ends. By using an optimized junction sequence, we could determine a high-resolution (2.7 Å) structure containing R3 crystal symmetry, with a slight subsequent improvement (2.6 Å) using a modified sticky-end sequence. The immobile Holliday junction sequence allowed us to produce crystals that provided unprecedented atomic detail. In addition, we expanded the crystal cavities by 50 % by adding an additional helical turn between junctions, and we solved the structure to 4.5 Å resolution by molecular replacement.  相似文献   

16.
Biomacromolecular nanotubes play important physiological roles in transmembrane ion/molecule channeling, intracellular transport, and inter‐cellular communications. While genetically encoded protein nanotubes are prevalent in vivo, the in vitro construction of biomimetic DNA nanotubes has attracted intense interest with the rise of structural DNA nanotechnology. The abiotic use of DNA assembly provides a powerful bottom‐up approach for the rational construction of complex materials with arbitrary size and shape at the nanoscale. More specifically, a typical DNA nanotube can be assembled either with parallel‐aligned DNA duplexes or by closing DNA tile lattices. These artificial DNA nanotubes can be tailored and site‐specifically modified to realize biomimetic functions including ionic or molecular channeling, bioreactors, drug delivery, and biomolecular sensing. In this Minireview, we aim to summarize recent advances in design strategies, including the characterization and applications of biomimetic DNA nanotubes.  相似文献   

17.
DNA nanotubes (NTs) have attracted extensive interest as artificial cytoskeletons for biomedical, synthetic biology, and materials applications. Here, we report the modular design and assembly of a minimalist yet robust DNA wireframe nanotube with tunable cross-sectional geometry, cavity size, chirality, and length, while using only four DNA strands. We introduce an h-motif structure incorporating double-crossover (DX) tile-like DNA edges to achieve structural rigidity and provide efficient self-assembly of h-motif-based DNA nanotube ( H-NT ) units, thus producing programmable, micrometer-long nanotubes. We demonstrate control of the H-NT nanotube length via short DNA modulators. Finally, we use an enzyme, RNase H, to take these structures out of equilibrium and trigger nanotube assembly at a physiologically relevant temperature, underlining future cellular applications. The minimalist H-NTs can assemble at near-physiological salt conditions and will serve as an easily synthesized, DNA-economical modular template for biosensors, plasmonics, or other functional materials and as cost-efficient drug-delivery vehicles for biomedical applications.  相似文献   

18.
Synthetic DNA has emerged as a powerful self‐assembled material for the engineering of nanoscale supramolecular devices and materials. Recently dissipative self‐assembly of DNA‐based supramolecular structures has emerged as a novel approach providing access to a new class of kinetically controlled DNA materials with unprecedented life‐like properties. So far, dissipative control has been achieved using DNA‐recognizing enzymes as energy dissipating units. Although highly efficient, enzymes pose limits in terms of long‐term stability and inhibition of enzyme activity by waste products. Herein, we provide the first example of kinetically controlled DNA nanostructures in which energy dissipation is achieved through a non‐enzymatic chemical reaction. More specifically, inspired by redox signalling, we employ redox cycles of disulfide‐bond formation/breakage to kinetically control the assembly and disassembly of tubular DNA nanostructures in a highly controllable and reversible fashion.  相似文献   

19.
The past several decades have witnessed a rapid revolution of DNA nanotechnology. DNA nanostructures are mainly synthesized with two approaches, by assembly of purely DNA-based nanostructures through complementary base pairing or grafting DNA onto nanoparticles (NPs). Despite the progress made, developing simple and universal methods for the synthesis of DNA nanoarchitectures with specific morphologies and functionalities is still a challenge. This article introduces the reader to a new biomimetic methodology that leads to the controlled synthesis of DNA nanoarchitectures based on metal–DNA coordination chemistry and, furthermore, demonstrates the broad biomedical applications of these functional materials. In particular, we highlight the coordination-driven 1) surface-functionalization of NPs with DNA molecules and 2) direct self-assembly of metal–DNA nanostructures. Finally, challenges and opportunities of this approach to develop nanobiotechnology are provided.  相似文献   

20.
DNA具有非凡的分子识别性能和显著的结构特征,这使得它在材料的纳米级调控方面具有独特的优越性,在许多领域也展现出广阔的应用前景。本文从模块化DNA自组装和DNA折纸术两个方面综述了近些年DNA纳米技术,包括近年来DNA纳米技术中比较新型的组装方法;并从DNA纳米结构作为模板定位纳米粒子和蛋白以及用于生物医药等方面介绍了DNA纳米技术的应用;同时,对DNA纳米技术发展及应用进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号