首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunotherapy has emerged as a promising new approach for cancer treatment. However, clinically available drugs have been limited until recently, and the antitumor efficacy of most cancer immunotherapies still needs to be improved. Herein, we develop diselenide–pemetrexed assemblies that combine natural killer (NK) cell-based cancer immunotherapy with radiotherapy and chemotherapy in a single system. The assemblies are prepared by co-assembly between pemetrexed and cytosine-containing diselenide through hydrogen bonds. Under γ-radiation, the hydrogen bonds are cleaved, resulting in the release of pemetrexed. At the same time, diselenide can be oxidized to seleninic acid, which suppresses the expression of human leukocyte antigen E (HLA-E) in cancer cells, thus activating the immune response of NK cells. In this way, cancer immunotherapy is combined with radiotherapy and chemotherapy, providing a new strategy for cancer treatment.  相似文献   

2.
A fluorescent, diselenide‐containing 9,10‐distyrylanthracene (DSA) derivative (SeDSA) with aggregation‐induced emission (AIE) characteristic was successfully synthesized and SeDSA nanoparticles (NPs) were prepared through a nanoprecipitation method. SeDSA could coassemble with an antitumor prodrug, diselenide‐containing paclitaxel (SePTX), which could be obtained by precipitation, to form SeDSA‐SePTX Co‐NPs (Co‐NPs). Molecular dynamics (MD) simulations reveal that the driving forces for the self‐assembly behaviors of SeDSA NPs and SePTX NPs are π–π interactions and hydrophobic interactions, respectively, while the driving forces for Co‐NPs include hydrophobic interactions between SeDSA and SePTX, π–π interactions between SeDSA molecules and hydrophobic interactions between SePTX molecules. Meanwhile, Se‐Se bonds play a crucial role in balancing the intramolecular forces. These diselenide‐containing nanoparticles (SeDSA NPs, SePTX NPs and Co‐NPs) exhibit a high stability under physiological conditions and excellent reduction‐sensitivity in the presence of the redox agent glutathione (GSH) because of the selenium‐sulfur exchange reaction between diselenide and GSH. Both SeDSA NPs and Co‐NPs show strong orange fluorescence emissions on the account of the AIE feature of SeDSA and they were easily internalized by HeLa and HepG2 cells. Distinctively, the Co‐NPs combine the advantage of SeDSA and SePTX for cell imaging and antineoplastic activity, and exhibit selectivity of cytotoxicities between neoplasia cells and normal cells. This study highlights the development of diselenide‐containing AIEgens as a unique approach to prepare uniform and stable fluorescent nanoparticles for the application in cell imaging and tumor treatment.  相似文献   

3.
Multi‐drug resistance (MDR) has become a major challenge for the further improvement of chemotherapy. Thus, more effective strategies for further enhancing the treatment against cancer by overcoming MDR are warranted. In this study, by the encapsulation of the radiosensitizing drug TPT into mesoporous silica nanoparticles (MSNs), the combined use of drug‐delivered chemotherapy and high‐energy X‐ray induced radiotherapy could produce synergetic chemoradiotherapeutic effects to kill multi‐drug resistant cells through significant DNA damage, thus leading to an efficient circumvention of MDR. We hope that this synergetic dual‐mode treatment strategy may achieve higher oncolytic efficacy and find use in future clinical anti‐MDR applications.  相似文献   

4.
An ability to promote therapeutic immune cells to recognize cancer cells is important for the success of cell‐based cancer immunotherapy. We present a synthetic method for functionalizing the surface of natural killer (NK) cells with a supramolecular aptamer‐based polyvalent antibody mimic (PAM). The PAM is synthesized on the cell surface through nucleic acid assembly and hybridization. The data show that PAM has superiority over its monovalent counterpart in powering NKs to bind to cancer cells, and that PAM‐engineered NK cells exhibit the capability of killing cancer cells more effectively. Notably, aptamers can, in principle, be discovered against any cell receptors; moreover, the aptamers can be replaced by any other ligands when developing a PAM. Thus, this work has successfully demonstrated a technology platform for promoting interactions between immune and cancer cells.  相似文献   

5.
Cancer stem cells (CSCs) are known to be resistant to conventional chemotherapy and radiotherapy. Specific CSC targeting and eradication is therefore a therapeutically important challenge. CD133 is a colorectal CSC marker with unknown function(s). Assessing proteomic changes induced by CD133 may provide clues not only to new CD133 functions but also to the chemotherapy and radiation susceptibility of colon cancer cells. To identify the proteins affected by CD133, CD133‐positive (CD133+), and CD133‐negative (CD133–) human colon cancer cells were obtained by cell sorting. Whole proteomes were profiled from SW620/CD133+ and SW620/CD133– cells and analyzed by 2D‐based proteome analysis. Nucleophosmin (NPM1) was identified as a protein regulated by CD133. CD133 protein level was not affected by NPM1, and an interaction between the two proteins was not observed. CD133 and NPM1 protein levels were positively correlated in 11 human colon cancer cell lines. The CD133+ subpopulation percentage or its value normalized against CD133 protein level was only linked to intrinsic susceptibility of human colon cancer cells to 5‐fluorouracil (5‐FU). However, either suppression of CD133 or NPM1 significantly increased 5‐FU susceptibility of SW620. The present study suggests that CD133‐regulated NPM1 protein level may provide a clue to novel CD133 function(s) linked to human colon cancer cell susceptibility to chemotherapy.  相似文献   

6.
《化学:亚洲杂志》2017,12(23):3053-3060
Cancer radiotherapy with 125I seeds demonstrates higher long‐term efficacy and fewer side effects than traditional X‐ray radiotherapy owing to its low‐dose and continuous radiation but is still limited by radioresistance in clinical applications. Therefore, the design and synthesis of sensitizers that could enhance the sensitivity of cancer cells to 125I seeds is of great importance for future radiotherapy. Selenium nanoparticles (SeNPs) have been found to exhibit high potential in cancer chemotherapy and as drug carriers. In this study, we found that, based on the Auger‐electron effect and Compton effect of Se atoms, cancer‐targeted SeNPs in combination with 125I seeds achieve synergetic effects to inhibit cancer‐cell growth and colony formation through the induction of cell apoptosis and cell cycle arrest. Detailed studies on the action mechanisms reveal that the combined treatments effectively activate intracellular reactive oxygen species (ROS) overproduction to regulate p53‐mediated DNA damage apoptotic signaling pathways and mitogen‐activated protein kinase (MAPK) phosphorylation and to prevent the self‐repair of cancer cells simultaneously. Taken together, the combination of SeNPs with 125I seeds could be further exploited as a safe and effective strategy for next‐generation cancer chemo‐radiotherapy in clinical applications.  相似文献   

7.
Dynamic covalent bonds are extensively employed in dynamic combinatorial chemistry. The metathesis reaction of disulfide bonds is widely used, but requires catalysis or irradiation with ultraviolet (UV) light. It was found that diselenide bonds are dynamic covalent bonds and undergo dynamic exchange reactions under mild conditions for diselenide metathesis. This reaction is induced by irradiation with visible light and stops in the dark. The exchange is assumed to proceed through a radical mechanism, and experiments with 2,2,6,6‐tetramethylpiperidin‐1‐yloxyl (TEMPO) support this assumption. Furthermore, the reaction can be conducted in different solvents, including protic solvents. Diselenide metathesis can also be used to synthesize diselenide‐containing asymmetric block copolymers. This work thus entails the use of diselenide bonds as dynamic covalent bonds, the development of a dynamic exchange reaction under mild conditions, and an extension of selenium‐related dynamic chemistry.  相似文献   

8.
Protein assemblies with high symmetry are widely distributed in nature. Most efforts so far have focused on repurposing these protein assemblies, a strategy that is ultimately limited by the structures available. To overcome this limitation, methods for fabricating novel self‐assembling proteins have received intensive interest. Herein, by reengineering the key subunit interfaces of native 24‐mer protein cage with octahedral symmetry through amino acid residues insertion, we fabricated a 16‐mer lenticular nanocage whose structure is unique among all known protein cages. This newly non‐native protein can be used for encapsulation of bioactive compounds and exhibits high uptake efficiency by cancer cells. More importantly, the above strategy could be applied to other naturally occurring protein assemblies with high symmetry, leading to the generation of new proteins with unexplored functions.  相似文献   

9.
Anticancer drug resistance demands innovative approaches that boost the activity of drugs against drug‐resistant cancers without increasing the systemic toxicity. Here we show the use of enzyme‐instructed self‐assembly (EISA) to generate intracellular supramolecular assemblies that drastically boost the activity of cisplatin against drug‐resistant ovarian cancer cells. We design and synthesize small peptide precursors as the substrates of carboxylesterase (CES). CES cleaves the ester bond pre‐installed on the precursors to form the peptides that self‐assemble in water to form nanofibers. At the optimal concentrations, the precursors themselves are innocuous to cells, but they double or triple the activity of cisplatin against the drug‐resistant ovarian cancer cells. This work illustrates a simple, yet fundamental, new way to introduce non‐cytotoxic components into combination therapies with cisplatin without increasing the systemic burden or side effects.  相似文献   

10.
It is estimated that there were 18.1 million cancer cases worldwide in 2018, with about 9 million deaths. Proper diagnosis of cancer is essential for its effective treatment because each type of cancer requires a specific treatment procedure. Cancer therapy includes one or more approaches such as surgery, radiotherapy, chemotherapy, and immunotherapy. In recent years, immunotherapy has received much attention and immune checkpoint molecules have been used to treat several cancers. These molecules are involved in regulating the activity of T lymphocytes. Accumulated evidence shows that targeting immune checkpoint regulators like PD-1/PD-L1 and CTLA-4 are significantly useful in treating cancers. According to studies, these molecules also have pivotal roles in the chemoresistance of cancer cells. Considering these findings, the combination of immunotherapy and chemotherapy can help to treat cancer with a more efficient approach. Among immune checkpoint molecules, the B7 family checkpoints have been studied in various cancer types such as breast cancer, myeloma, and lymphoma. In these cancers, they cause the cells to become resistant to the chemotherapeutic agents. Discovering the exact signaling pathways and selective targeting of these checkpoint molecules may provide a promising avenue to overcome cancer development and therapy resistance. Highlights: (1) The development of resistance to cancer chemotherapy or immunotherapy is the main obstacle to improving the outcome of these anti-cancer therapies. (2) Recent investigations have described the involvement of immune checkpoint molecules in the development of cancer therapy resistance. (3) In the present study, the molecular participation of the B7 immune checkpoint family in anticancer therapies has been highlighted. (4) Targeting these immune checkpoint molecules may be considered an efficient approach to overcoming this obstacle.  相似文献   

11.
Herein, we propose a drug‐free approach to cancer therapy that involves cancer cell targeting calcification (CCTC). Several types of cancer cells, such as HeLa cells, characterized by folate receptor (FR) overexpression, can selectively adsorb folate (FA) molecules and then concentrate Ca2+ locally to induce specific cell calcification. The resultant calcium mineral encapsulates the cancer cells, inducing their death, and in vivo assessments confirm that CCTC treatment can efficiently inhibit tumor growth and metastasis without damaging normal cells compared with conventional chemotherapy. Accordingly, CCTC remarkably improve the survival rate of tumor mice. Notably, both FA and calcium ions are essential ingredients in human metabolism, which means that CCTC is a successful drug‐free method for tumor therapy. This achievement may further represent an alternative cancer therapy characterized by selective calcification‐based substitution of sclerosis for tumor disease.  相似文献   

12.
Lymphocytes, such as T cells and natural killer (NK) cells, have therapeutic promise in adoptive cell transfer (ACT) therapy, where the cells are activated and expanded in vitro and then infused into a patient. However, the in vitro preservation of labile lymphocytes during transfer, manipulation, and storage has been one of the bottlenecks in the development and commercialization of therapeutic lymphocytes. Herein, we suggest a cell‐in‐shell (or artificial spore) strategy to enhance the cell viability in the practical settings, while maintaining biological activities for therapeutic efficacy. A durable titanium oxide (TiO2) shell is formed on individual Jurkat T cells, and the CD3 and other antigens on cell surfaces remain accessible to the antibodies. Interleukin‐2 (IL‐2) secretion is also not hampered by the shell formation. This work suggests a chemical toolbox for effectively preserving lymphocytes in vitro and developing the lymphocyte‐based cancer immunotherapy.  相似文献   

13.
Hypoxia, as a characteristic feature of solid tumor, can significantly adversely affect the outcomes of cancer radiotherapy (RT), photodynamic therapy, or chemotherapy. In this study, a strategy is developed to overcome tumor hypoxia‐induced radiotherapy tolerance. Specifically, a novel two‐dimensional Pd@Au bimetallic core–shell nanostructure (TPAN) was employed for the sustainable and robust production of O2 in long‐term via the catalysis of endogenous H2O2. Notably, the catalytic activity of TPAN could be enhanced via surface plasmon resonance (SPR) effect triggered by NIR‐II laser irradiation, to enhance the O2 production and thereby relieve tumor hypoxia. Thus, TPAN could enhance radiotherapy outcomes by three aspects: 1) NIR‐II laser triggered SPR enhanced the catalysis of TPAN to produce O2 for relieving tumor hypoxia; 2) high‐Z element effect arising from Au and Pd to capture X‐ray energy within the tumor; and 3) TPAN affording X‐ray, photoacoustic, and NIR‐II laser derived photothermal imaging, for precisely guiding cancer therapy, so as to reduce the side effects from irradiation.  相似文献   

14.
Four‐way junctions (4WJs) are supramolecular DNA assemblies comprising four interacting DNA strands that in biology are involved in DNA‐damage repair. In this study, a new mononuclear platinum(II) complex 1 was prepared that is capable of driving the crystallization of the DNA oligomer 5′‐d(CGTACG)‐3′ specifically into a 4WJ‐like motif. In the crystal structure of the 1 –CGTACG adduct, the distorted‐square‐planar platinum complex binds to the core of the 4WJ‐like motif through π–π stacking and hydrogen bonding, without forming any platinum–nitrogen coordination bonds. Our observations suggest that the specific molecular properties of the metal complex are crucially responsible for triggering the selective assembly of this peculiar DNA superstructure.  相似文献   

15.
Herein, a novel cationic peptide gemini amphiphile containing diacetylene motifs ( DA2P ) is presented, which self‐assembles into novel tadpole‐ and bola‐shaped nanostructures at low concentrations and nanofibers at higher concentrations. Interestingly, the DA2P assemblies can be polymerized into a fluorescent red phase but only during incubation with HeLa cells, most likely owing to the reorganization of the diacetylene chains of DA2P upon interaction with the cell membrane. The red‐fluorescent polymerized DA2P assemblies can serve as a novel cell imaging probe. However, only vesicles, tadpole‐ and bola‐shaped DA2P assemblies can be translocated into HeLa cells, whereas the nanofiber‐like DA2P assemblies are trapped by the cell membranes and do not enter the cells. Hence, morphology‐dependent cell imaging is observed.  相似文献   

16.
Self‐assembly of peptide‐based building units into supramolecular nanostructures creates an important class of biomaterials with robust mechanical properties and improved resistance to premature degradation. Yet, upon aggregation, substrate–enzyme interactions are often compromised because of the limited access of macromolecular proteins to the peptide substrate, leading to either a reduction or loss of responsiveness to biomolecular cues. Reported here is the supramolecular design of unsymmetric reverse bolaamphiphiles (RBA) capable of exposing a matrix metalloproteinase (MMP) substrate on the surface of their filamentous assemblies. Upon addition of MMP‐2, these filaments rapidly break into fragments prior to reassembling into spherical micelles. Using 3D cell culture, it is shown that drug release is commensurate with cell density, revealing more effective cell killing when more cancer cells are present. This design platform could serve as a cell‐responsive therapeutic depot for local chemotherapy.  相似文献   

17.
Cancer immunotherapies that train or stimulate the inherent immunological systems to recognize, attack, and eradicate tumor cells with minimal damage to healthy cells have demonstrated promising clinical responses in recent years. However, most of these immunotherapeutic strategies only benefit a small subset of patients and cause systemic autoimmune side effects in some patients. Immunogenic cell death (ICD)‐inducing modalities not only directly kill cancer cells but also induce antitumor immune responses against a broad spectrum of solid tumors. Such strategies for generating vaccine‐like functions could be used to stimulate a “cold” tumor microenvironment to become an immunogenic, “hot” tumor microenvironment, working in synergy with immunotherapies to increase patient response rates and lead to successful treatment outcomes. This Minireview will focus on nanoparticle‐based treatment modalities that can induce and enhance ICD to potentiate cancer immunotherapy.  相似文献   

18.
Carbonic anhydrase IX (CA IX), over‐expressed on cancer cells, catalyzes CO2 to bicarbonate and protons, contributing to the acidic extracellular pH (pHe), which enhances the multidrug resistance of tumor cells. Therefore, alleviating tumor acidosis would greatly improve the outcome of chemotherapy. This work fabricates acetazolamide (ACE)‐loaded pH‐responsive nanoparticles (ACE‐NPs), which are quickly disintegrated in an acidic solution (pH 6.8), resulting in a quick release of ACE from these NPs to inhibit the expression of CA IX, thus up‐regulating the pHe value. These ACE‐NPs have no obvious in vitro cytotoxicity and in vivo studies confirm the accumulation of ACE‐NPs in tumor tissue. In addition, mice treated with ACE and paclitaxel (PTX) co‐loaded NPs show a smaller tumor size and a higher survival rate when compared to that of mice treated with ACE‐ or PTX‐loaded NPs. This work reveals that simultaneous delivery of ACE and chemotherapy agents to tumor tissue can up‐regulate the acidic pHe value, consequently enhancing the anti‐tumor ability of chemotherapy medicine. These findings open a new window for enhancing the anti‐tumor ability of traditional chemotherapy in clinic.  相似文献   

19.
This review article describes the chemistry of transition‐metal complexes containing heavier group 14 elements (Si, Ge, and Sn) as the σ‐electron‐acceptor (Z‐type) ligands and discusses the characteristics of bonds between the transition metal and Z‐type ligand. Moreover, we review the iridium hydride mediated cleavage of E–X bonds (E=Si, Ge; X=F, Cl), where the key intermediates are pentacoordinate silicon or germanium compounds bearing a dative M→E bond.  相似文献   

20.
The monodispersed spindle‐like polypyrrole hollow nanocapsules (PPy HNCs) as the multifunctional platforms for combining chemotherapy with photothermal therapy for cancer cells are reported. Whereas the hollow cavity of nanocapsules can be used to load the anticancer drug (i.e., doxorubicin) for chemotherapy, the PPy shells can convert NIR light into heat for photothermal therapy. The release of the drug from the spindle‐like PPy HNCs is pH‐sensitive and near‐infrared (NIR) light‐enhanced. More importantly, the spindle‐like PPy HNCs can penetrate cells more rapidly and efficiently in comparison with the spherical PPy HNCs. Both in vitro and in vivo experiments demonstrated that the combination of DOX‐loaded spindle‐like PPy HNCs and NIR light provide a highly effective and feasible chemo‐photothermal therapy cancer method with a synergistic effect. Owing to their high photothermal conversion efficiency, large hollow cavity, and good biocompatibility, the spindle‐like PPy HNCs could be used as a promising new cancer drug‐nanocarrier and photothermal agent for localized tumorous chemo‐photothermal therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号