首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid analysis of single and scant cell populations is essential in modern diagnostics, yet existing methods are often limited and slow. Herein, we describe an ultra-fast, highly efficient cycling method for the analysis of single cells based on unique linkers for tetrazine (Tz)/trans-cyclooctene (TCO)-mediated quenching. Surprisingly, the quenching reaction rates were more than 3 orders of magnitude faster (t1/2 <1 s) than predicted. This allowed multi-cycle staining and immune cell profiling within an hour, leveraging the accelerated kinetics to open new diagnostic possibilities for rapid cellular analyses.  相似文献   

2.
Excitation of the peripheral Zn porphyrin units in a noncovalent five‐porphyrin array, formed by gable‐like zinc(II) bisporphyrins and a central free‐base meso‐tetrakis(4‐pyridyl)porphyrin in a 2:1 ratio, ( ZnP2 )2? ( TPyP ), does not lead to a quantitative sensitization of the luminescence of the free‐base porphyrin acceptor, even though there is an effective energy transfer. Time resolution of the luminescence evidences a quenching of TPyP upon sensitization by the peripheral ZnP2 . The time evolution of the TPyP fluorescence in the complex can be described by a bi‐exponential fitting with a major component of 180 ps and a minor one of 5 ns, compared to an isolated TPyP lifetime of 9.4 ns. The two quenched lifetimes are shown to be correlated to the presence of 2:1 and 1:1 complexes, respectively. No quenching of TPyP fluorescence occurs in ( ZnP2 )2?( TPyP ) at 77 K in a rigid solvent for which only an energy‐transfer process (τ=150±10 ps) from peripheral ZnP2 to the central TPyP is observed. An unusual HOMO–HOMO electron‐transfer reaction from ZnP2 to the excited TPyP units, responsible for the observed phenomena, is detected. The resulting charge‐separated state, ( ZnP2 )+2?( TPyP )? is found to recombine to the ground state with a lifetime of 11 ns.  相似文献   

3.
Temperature measurements in biology and medical diagnostics, along with sensitive temperature probing of living cells, is of great importance; however, it still faces significant challenges. Herein, a novel “turn‐on” carbon‐dot‐based fluorescent nanothermometry device for spatially resolved temperature measurements in living cells is presented. The carbon nanodots (CNDs) are prepared by a green microwave‐assisted method and exhibit red fluorescence (λem=615 nm) with high quantum yields (15 %). Then, an on–off fluorescent probe is prepared for detecting glutathione (GSH) based on aggregation‐induced fluorescence quenching. Interestingly, the quenched fluorescence could be recovered by increasing temperature and the CNDs–GSH mixture could behave as an off–on fluorescent probe for temperature. Thus, red‐emitting CNDs can be utilized for “turn‐on” fluorescent nanothermometry through the fluorescence quenching and recovery processes, respectively. We employ MC3T3‐E1 cells as an example model to demonstrate the red‐emitting CNDs can function as “non‐contact” tools for the accurate measurement of temperature and its gradient inside a living cell.  相似文献   

4.
Emission quenching of [Ru(bpy)2(4, 4'-dcbpy)] (PF6)2 (1) by benzenamine,4-[2-[5-[4-[4-dimethylamino]phenyl]-4,5-di-hydro-1-phenyl-1H-pyrazol-3-yl]-ethenyl]-N,N-dimetyl (2) or 1, 5-diphenyl-3-(2-phenothiazine)-2-pyrazoline (3) was observed. Measurements of the emission decay of 1 before and after addition of 2 or 3 by single photon counting technique con-finned the observations. The emission quenching of 1 by 2 or 3 was submitted to Stern-Volmer equation. It was calculated that the quenching rate constants (kq) are 5.5 × 109(mol/L)-1s-1 for 2 and 4.0 × 109(mol/L)-1s-1 for 3, respectively. These results indicated a character of dynamic quenching process. The singlet-state of 2 or 3 was also quenched by 1. The quenching behaviors did not conform to the Stern- Volmer equation and involved both static and dynamic quenching processes. The apparent quenching rate constant (kapp) was calculated to be 3 × 109 (mol/L)-1 for the interaction of excited 2 with 1, and 1.2 × 109 (mol/L)-1 for that of excited 3 wit  相似文献   

5.
Two new complexes, namely [Cu6L6] ( 1 ) and [Zn(HL)2] ( 2 ) (H2L = N‐(1‐phenyl‐3‐methyl‐4‐propenylidene‐5‐pyrazolone)‐2‐furancarboxylic acid hydrazide), have been synthesized and characterized. Single crystal X‐ray analysis indicates that complex 1 has a hexanuclear structure and complex 2 exhibits a mononuclear structure. The DNA/bovine serum albumin (BSA) binding properties of complexes 1 and 2 were investigated by absorption spectroscopy and fluorescence quenching. Both complexes could effectively intercalate to DNA with calculated quenching constants of 2.6 × 105 and 1.25 × 105 M?1, respectively. The quenching mechanism of the intrinsic fluorescence of BSA by the complexes was found to be a static one. The cytotoxicities of 1 and 2 were investigated in two human tumor cell lines, human esophageal cancer cells (Eca‐109) and cervical cancer cells (HeLa). Complex 1 exhibits higher antitumor activity than 2 . Furthermore, 1 can inhibit HeLa cells by inducing apoptosis and G0/G1 phase cell cycle arrest. All results demonstrate that 1 and 2 both have DNA/BSA binding capacity and antitumor activity.  相似文献   

6.
Reaction of iron(II), cobalt(II) and nickel(II) selenocyanate with pyrazine in water at room temperature leads to the formation of the isotypic new ligand‐rich 1:2 (1:2 = ratio between metal and co‐ligand) compounds [M(NCSe)2(pyrazine)2]n (M = Fe ( 1 ), Co ( 2 ), Ni ( 3 )). The crystal structure of 2 was determined by X‐ray single crystal analysis and those of 1 and 3 were refined from X‐ray powder data with the Rietveld method. In their crystal structure the metal(II) cations are coordinated by four pyrazine co‐ligands, which connect them into layers, and two terminally N‐bonded selenocyanato anions in a distorted octahedral arrangement. The terminal coordination mode of the selenocyanato anions was further emphasized by IR spectroscopic investigations. On heating, all compounds decompose in a single heating step without the formation of ligand‐deficient intermediates like previously reported for related thiocyanato compounds. Magnetic measurements of compound 1 show a long‐range antiferromagnetic ordering with an ordering temperature of TN = 6.7 K, which must be mediated by the aromatic π‐system of the pyrazine ligand, whereas 2 and 3 show only Curie–Weiss behavior with antiferromagnetic exchange interactions.  相似文献   

7.
A vanadium porphyrin, V(O)TMeOPP ( 1 ; TMeOPP=5, 10, 15, 20‐tetrakis(4‐methoxyphenyl)‐21 H, 23H‐porphyrin), has been synthesized by solvothermal reactions and characterized by single‐crystal X‐ray diffractions at room temperature and low temperature to reveal two different structures 1R and 1L , respectively. Both 1R and 1L crystallized in the orthorhombic system, but their space groups were different: Pbca and Pca21 for 1R and 1L , respectively. The cell parameters of a, b, and c were different and the cell volume of 1R was larger than that of 1L by circa 200 Å3. 1R and 1L were characteristic of an isolated motif with a five‐coordinate vanadium(IV) ion and a saddle‐distorted nonplanar porphyrin macrocycle. Molecules of 1R were interconnected through hydrogen‐bonding interactions to yield a 3D framework; whilst for the low‐temperature phase 1L , there were more hydrogen‐bonding interactions that link the molecules to construct a more‐complex 3D supramolecular network. In a solution of acetone, the title compound exhibited purple and green colors at room temperature and low temperature, respectively, which is unprecedented for vanadium porphyrins. The spectral data of UV/Vis, FT‐IR, and MALDI‐TOF‐MS of 1R and 1L are reported together with the electrochemical data.  相似文献   

8.
Water‐soluble cationic alkynylplatinum(II) 2,6‐bis(benzimidazol‐2′‐yl)pyridine (bzimpy) complexes have been demonstrated to undergo supramolecular assembly with anionic polyelectrolytes in aqueous buffer solution. Metal–metal‐to‐ligand charge transfer (MMLCT) absorptions and triplet MMLCT (3MMLCT) emissions have been found in UV/Vis absorption and emission spectra of the electrostatic assembly of the complexes with non‐conjugated polyelectrolytes, driven by Pt???Pt and π–π interactions among the complex molecules. Interestingly, the two‐component ensemble formed by [Pt(bzimpy‐Et){C?CC6H4(CH2NMe3‐4)}]Cl2 ( 1 ) with para‐linked conjugated polyelectrolyte (CPE), PPE‐SO3?, shows significantly different photophysical properties from that of the ensemble formed by 1 with meta‐linked CPE, mPPE‐Ala. The helical conformation of mPPE‐Ala allows the formation of strong mPPE‐Ala– 1 aggregates with Pt???Pt, electrostatic, and π–π interactions, as revealed by the large Stern–Volmer constant at low concentrations of 1 . Together with the reasonably large Förster radius, large HOMO–LUMO gap and high triplet state energy of mPPE‐Ala to minimize both photo‐induced charge transfer (PCT) and Dexter triplet energy back‐transfer (TEBT) quenching of the emission of 1 , efficient Förster resonance energy transfer (FRET) from mPPE‐Ala to aggregated 1 molecules and strong 3MMLCT emission have been found, while the less strong PPE‐SO3?– 1 aggregates and probably more efficient PCT and Dexter TEBT quenching would account for the lack of 3MMLCT emission in the PPE‐SO3?– 1 ensemble.  相似文献   

9.
Pyrazolo[3,4‐b]quinoline derivatives are reported to be highly efficient organic fluorescent materials suitable for applications in light‐emitting devices. Although their fluorescence remains stable in organic solvents or in aqueous solution even in the presence of H2O, halide salts (LiCl), alkali (NaOH) and weak acid (acetic acid), it suffers an efficient quenching process in the presence of protic acid (HCl) in aqueous or ethanolic solution. This quenching process is accompanied by a change in the UV spectrum, but it is reversible and can be fully recovered. Both steady‐state and transient fluorescence spectra of 1‐phenyl‐3,4‐dimethyl‐1H‐pyrazolo‐[3,4‐b]quinoline (PAQ5) during quenching are measured and analyzed. It is found that a combined dynamic and static quenching mechanism is responsible for the quenching processes. The ground‐state proton‐transfer complex [PAQ5 ??? H+] is responsible for static quenching. It changes linearly with proton concentration [H+] with a bimolecular association constant KS=1.95 M ?1 controlled by the equilibrium dissociation of HCl in ethanol. A dynamic quenching constant KD=22.4 M ?1 is obtained by fitting to the Stern–Volmer equation, with a bimolecular dynamic quenching rate constant kd=1.03×109 s?1 M ?1 under ambient conditions. A change in electron distribution is simulated and explains the experiment results.  相似文献   

10.
The preparation and structures of 2, 2′‐dihydroxyazobenzenato‐dibutyl‐tin [Bu2SnL] and 2, 2′‐dihydroxyazobenzenato‐dimethyl‐tin [Me2SnL] are described. The complexes were characterized by IR, NMR (1H, 13C, 119Sn) and UV/VIS spectra. The crystal structures were determined by X‐ray diffraction on single crystals. [Bu2SnL]: monoclinic, space group P21/c, cell constants at 208 K: a = 860.73(5), b = 973, 51(18), c = 2340.0(3) pm, β = 93.615(11)°; R1 = 0.0546. [Me2SnL]: orthorhombic, space group Pbcn, cell constants at 208 K: a = 1914.6(4), b = 1041.3(3), c = 1323.27(14) pm; R1 = 0.0529.  相似文献   

11.
A novel and potentially active dihydroorotate dehydrogenase (DHODH) inhibitor, namely 3‐({(E )‐[(E )‐1‐(biphenyl‐4‐yl)ethylidene]hydrazinylidene}methyl)‐1H‐indole (BEHI) acetonitrile disolvate, C23H19N3·2CH3CN, has been designed and synthesized. The structure of BEHI was characterized by elemental analysis, Q‐TOF (quadrupole time‐of‐flight) MS, NMR, UV–Vis and single‐crystal X‐ray diffraction. The antitumour activity of the target molecule was evaluated by the MTT method. Results indicated that BEHI exhibited rather potent cytotoxic activity against human A549 (IC50 = 20.5 µM ) and mouse breast 4T1 (IC50 = 18.5 µM ) cancer cell lines. Meanwhile, to rationalize its potencies in the target, BEHI was docked into DHODH and the interactions with the active site residues were analyzed. Single‐crystal structure analysis indicated that hydrogen bonds are present only between BEHI and acetonitrile solvent molecules in the asymmetric unit. The interplay of weak π–π stacking and weak C(N)—H…π interactions between neighbouring BEHI molecules play crucial roles in the formation of the final supramolecular frameworks.  相似文献   

12.
Eight novel Schiff bases derived from benzil dihydrazone ( BDH ) or benzil monohydrazone ( BMH ) and four fused‐ring carbonyl compounds (3‐formylindole, FI ; 3‐acetylindole, AI ; 3‐formyl‐1‐methylindole, MFI ; 1‐formylnaphthalene, FN ) were synthesized and characterized by elemental analysis, ESI–QTOF–MS, 1H and 13C NMR spectroscopy, as well as single‐crystal X‐ray diffraction. They are (1Z,2Z)‐1,2‐bis{(E)‐[(1H‐indol‐3‐yl)methylidene]hydrazinylidene}‐1,2‐diphenylethane ( BDHFI ), C32H24N6, (1Z,2Z)‐1,2‐bis{(E)‐[1‐(1H‐indol‐3‐yl)ethylidene]hydrazinylidene}‐1,2‐diphenylethane ( BDHAI ), C34H28N6, (1Z,2Z)‐1,2‐bis{(E)‐[(1‐methyl‐1H‐indol‐3‐yl)methylidene]hydrazinylidene}‐1,2‐diphenylethane ( BMHMFI ) acetonitrile hemisolvate, C34H28N6·0.5CH3CN, (1Z,2Z)‐1,2‐bis{(E)‐[(naphthalen‐1‐yl)methylidene]hydrazinylidene}‐1,2‐diphenylethane ( BDHFN ), C36H26N4, (Z)‐2‐{(E)‐[(1H‐indol‐3‐yl)methylidene]hydrazinylidene}‐1,2‐diphenylethanone ( BMHFI ), C23H17N3O, (Z)‐2‐{(E)‐[1‐(1H‐indol‐3‐yl)ethylidene]hydrazinylidene}‐1,2‐diphenylethanone ( BMHAI ), C24H19N3O, (Z)‐2‐{(E)‐[(1‐methyl‐1H‐indol‐3‐yl)methylidene]hydrazinylidene}‐1,2‐diphenylethanone ( BMHMFI ), C24H19N3O, and (Z)‐2‐{(E)‐[(naphthalen‐1‐yl)methylidene]hydrazinylidene}‐1,2‐diphenylethanone ( BMHFN ) C25H18N2O. Moreover, the in vitro cytotoxicity of the eight title compounds was evaluated against two tumour cell lines (A549 human lung cancer and 4T1 mouse breast cancer) and two normal cell lines (MRC‐5 normal lung cells and NIH 3T3 fibroblasts) by MTT assay. The results indicate that four ( BDHMFI , BDHFN , BMHMFI and BMHFN ) are inactive and the other four ( BDHFI , BDHAI , BMHFI and BMHAI ) show severe toxicities against human A549 and mouse 4T1 cells, similar to the standard cisplatin. All the compounds exhibited weaker cytotoxicity against normal cells than cancer cells. The Swiss Target Prediction web server was applied for the prediction of protein targets. After analyzing the differences in frequency hits between these active and inactive Schiff bases, 18 probable targets were selected for reverse docking with the Surflex‐dock function in SYBYL‐X 2.0 software. Three target proteins, i.e. human ether‐á‐go‐go‐related (hERG) potassium channel, the inhibitor of apoptosis protein 3 and serine/threonine‐protein kinase PIM1, were chosen as the targets. Finally, the ligand‐based structure–activity relationships were analyzed based on the putative protein target (hERG) docking results, which will be used to design and synthesize novel hERG ion channel inhibitors.  相似文献   

13.
The reaction of germa‐closo‐dodecaborate with oneequivalent of silver halide AgX (X = Cl, Br) leads to the tetrameric1:1 adducts [Et3MeN]8[{AgCl(GeB11H11)}4] ( 1 ) and [Et3MeN]8[{AgBr(GeB11H11)}4] ( 2 ). A cubane‐like structure was determined in the solid state by single‐crystal X‐ray diffraction. The compounds were characterized by crystal structure analysis, 11B NMR spectroscopy and elemental analysis.  相似文献   

14.
Novel 2‐(1‐substituted‐1H‐1,2,3‐triazol‐4‐yl)pyridine (pytl) ligands have been prepared by “click chemistry” and used in the preparation of heteroleptic complexes of Ru and Ir with bipyridine (bpy) and phenylpyridine (ppy) ligands, respectively, resulting in [Ru(bpy)2(pytl‐R)]Cl2 and [Ir(ppy)2(pytl‐R)]Cl (R=methyl, adamantane (ada), β‐cyclodextrin (βCD)). The two diastereoisomers of the Ir complex with the appended β‐cyclodextrin, [Ir(ppy)2(pytl‐βCD)]Cl, were separated. The [Ru(bpy)2(pytl‐R)]Cl2 (R=Me, ada or βCD) complexes have lower lifetimes and quantum yields than other polypyridine complexes. In contrast, the cyclometalated Ir complexes display rather long lifetimes and very high emission quantum yields. The emission quantum yield and lifetime (Φ=0.23, τ=1000 ns) of [Ir(ppy)2(pytl‐ada)]Cl are surprisingly enhanced in [Ir(ppy)2(pytl‐βCD)]Cl (Φ=0.54, τ=2800 ns). This behavior is unprecedented for a metal complex and is most likely due to its increased rigidity and protection from water molecules as well as from dioxygen quenching, because of the hydrophobic cavity of the βCD covalently attached to pytl. The emissive excited state is localized on these cyclometalating ligands, as underlined by the shift to the blue (450 nm) upon substitution with two electron‐withdrawing fluorine substituents on the phenyl unit. The significant differences between the quantum yields of the two separate diastereoisomers of [Ir(ppy)2(pytl‐βCD)]Cl (0.49 vs. 0.70) are attributed to different interactions of the chiral cyclodextrin substituent with the Δ and Λ isomers of the metal complex.  相似文献   

15.
A series of N‐(ferrocenylmethyl amino acid) fluorinated benzene‐carboxamide derivatives 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i and 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i have been synthesized by coupling ferrocenylmethyl amine 3 with various substituted N‐(fluorobenzoyl) amino acid derivatives using the standard N‐(3‐dimethylaminopropyl)‐N′‐ethylcarbodiimide hydrochloride, 1‐hydroxybenzotriazole protocol. The amino acids employed in this study were glycine and L‐alanine. All of the compounds were fully characterized using a combination of 1H NMR, 13C NMR, 19F NMR, distortionless enhancement by polarization transfer (DEPT)‐135, 1H–1H correlation spectroscopy (COSY) and 1H–13C COSY (heteronuclear multiple‐quantum correlation) spectroscopy. The compounds were biologically evaluated on the oestrogen‐positive MCF‐7 breast cancer cell line. Compounds 4g , 4i , 5h and 5i exhibited cytotoxic effects on the MCF‐7 breast cancer cell line. N‐(Ferrocenylmethyl‐L‐alanine)‐3,4,5‐trifluorobenzene‐carboxamide ( 5h ) was the most active compound, with an IC50 value of 2.84 μm . Compounds 4i , 5h and 5i had lower IC50 values than that found for the clinically employed anticancer drug cisplatin (IC50 = 16.3 μm against MCF‐7). Guanine oxidation studies confirmed that 5h was capable of generating oxidative damage via a reactive oxygen species‐mediated mechanism. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
β,β‐(1,4‐Dithiino)subporphyrin dimers 7‐syn and 7‐anti were synthesized by the nucleophilic aromatic substitution reaction of 2‐bromo‐3‐(4‐methoxyphenylsulfonyl)subporphyrin 4 with 2,3‐dimercaptosubporphyrin 5 under basic conditions followed by axial arylation. Additions of C60 or C70 to a dilute solution of 7‐anti (ca. 10?6 m ) in toluene did not cause appreciable UV/Vis spectral changes, while similar additions to a concentrated solution (ca. 10?3 m ) resulted in precipitation of complexes. In contrast, dimer 7‐syn captured C60 and C70 in different complexation stoichiometries in toluene; a 1:1 manner and a 2:1 manner, respectively, with large association constants; Ka=(1.9±0.2)×106 m ?1 for C60@ 7‐syn , and K1=(1.6±0.5)×106 and K2=(1.8±0.9)×105 m ?1 for C70@( 7‐syn )2. These association constants are the largest for fullerenes‐capture by bowl‐shaped molecules reported so far. The structures of C60@ 7‐anti , C70@ 7‐anti , C60@ 7‐syn , and C70@ 7‐syn have been determined by single‐crystal X‐ray diffraction analysis.  相似文献   

17.
We demonstrate a reversible shape‐morphing with concurrent fluorescence switching in the nanomaterials which are complexed with cucurbit[7]uril (CB[7]) in water. The cyanostilbene derivative alone forms ribbon‐like two‐dimensional (2D) nanocrystals with bright yellow excimeric emission in water (λem=540 nm, ΦF=42 %). Upon CB[7] addition, however, the ribbon‐like 2D nanocrystals immediately transform to spherical nanoparticles with significant fluorescence quenching and blue‐shifting (λem=490 nm, ΦF=1 %) through the supramolecular complexation of the cyanostilbene and CB[7]. Based on this reversible fluorescence switching and shape morphing, we could demonstrate a novel strategy of turn‐on fluorescence sensing of spermine and also monitoring of lysine decarboxylase activity.  相似文献   

18.
Six novel organotin (IV) complexes, [(Me3Sn)2(H2O)2L] ( 1 ), [(R3Sn)2L]n (R = Me 2 , R = n‐Bu 3 ), [(Ph3Sn)2L] ( 4 ), [Me2SnL]n ( 5 ), [(Me2Sn)2L(μ3‐O)]n ( 6 ) have been designed and synthesized by the reactions of 4,4′‐oxybisbenzoic acid (H2L) and triorganotin (IV) chloride or oxide. All the complexes have been characterized by elemental analysis, FT‐IR, NMR, ESI‐Mass, PXRD and X‐ray crystallography. The single crystal diffraction reveals that complexes 1 and 4 represent dinuclear tin monomers. Complexes 2 and 3 display 2D network structure and 2D corrugated framework respectively, which both contain tetranuclear 36‐membered macrocycles. Furthermore, 2D structures are linked into a 3D supramolecular structures through intermolecular C‐H ··· π interactions. Complex 5 shows 1D infinite helical chain and further constructs 3D ladder supramolecular architecture through additional Sn ··· O and C‐H ··· O intermolecular interactions. Complex 6 displays 1D infinite polymeric chain containing 28‐membered macrocyclic ring. Preliminarily in vitro cytostatic activity studies on cervical carcinoma cell lines (HeLa) and hepatocellular carcinoma cell lines (HepG‐2) by MTT assay for some complexes reveal that complexes 3 and 4 exhibit high cytostatic activity. Further, complexes 3 and 4 were selected to investigate interactions of bovine serum albumin (BSA) by fluorescence quenching spectra and synchronous fluorescence spectra, which indicates that the complexes could quench the intrinsic fluorescence of BSA in a static quenching process.  相似文献   

19.
We report the synthesis, structural, and electronic characterization of the theoretically predicted, but experimentally elusive δ‐isomer of the Keggin polyoxometalate polyanion. A family of δ‐Keggin polyoxoanions of the general formula, (TEA)HpNaq [H2M12(XO4)O33(TEA)]?r H2O where p, q, r=[2,3,8] for 1 and [4,1,4] for 2 were isolated by the reaction of tungstate(VI) and vanadium(V) with triethanolammonium ions (TEAH), acting as a tripodal ligand grafted to the surface of the cluster thereby stabilizing the polyanionic δ‐Keggin archetype. The δ‐Keggin species were characterized by single‐crystal X‐ray diffraction, FT‐IR, UV/Vis, NMR, and ESI‐MS spectrometry. Electronic structure and structure–stability correlations were evaluated by means of DFT calculations. The compounds exhibited multi‐electron transfer and reversible photochromic properties by undergoing single‐crystal‐to‐single‐crystal (SC–SC) transformations accompanied with color changes under light.  相似文献   

20.
The structural features leading to the intense quenching free luminescence exhibited by europium oxalate nanocrystals, poly[[hexaaquatri‐μ2‐oxalato‐dieuropium] 4.34‐hydrate], {[Eu2(C2O4)3(H2O)6]·4.34H2O}n, is the focal point of this report. Europium oxalate nanocrystals were synthesized by a simple microwave‐assisted co‐precipitation method. Powder X‐ray diffraction analysis revealed the monoclinic structure of the nanocrystals and the phase purity. The morphology and particle size were examined by transmission electron microscopy (TEM) analysis. Luminescence measurements on a series of samples of La2–xEux(C2O4)3·10H2O, with x varying in the range 0.1 to 2, established the quenching free nature exhibited by the europium oxalate nanocrystals. A single‐crystal structure analysis was carried out and the quenching free luminescence is explained on the basis of the crystal structure. A detailed photoluminescence characterization was carried out using excitation and emission studies, decay analysis, and CIE coordinate and colour purity evaluation. The various spectroscopic parameters were evaluated by Judd–Ofelt theoretical analysis and the results are discussed on the basis of the crystal structure analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号