首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein, an iron(II)-catalyzed biomimetic oxidation of N-heterocycles under aerobic conditions is described. The dehydrogenation process, involving several electron-transfer steps, is inspired by oxidations occurring in the respiratory chain. An environmentally friendly and inexpensive iron catalyst together with a hydroquinone/cobalt Schiff base hybrid catalyst as electron-transfer mediator were used for the substrate-selective dehydrogenation reaction of various N-heterocycles. The method shows a broad substrate scope and delivers important heterocycles in good-to-excellent yields.  相似文献   

2.
An aerobic iron(II)‐catalyzed cleavage of catechols was developed. This reaction allows for the preparation of 2‐methoxy‐2 H‐pyrans that can be employed as versatile building blocks for synthesis. The utility of this biomimetic oxidative cleavage is featured in the synthesis of betanidin, a natural colorant with antioxidant properties.  相似文献   

3.
The copper‐catalyzed aerobic oxidation of primary and secondary alcohols without an external N‐oxide co‐oxidant is described. The catalyst system is composed of a Cu/diamine complex inspired by the enzyme tyrosinase, along with dimethylaminopyridine (DMAP) or N‐methylimidazole (NMI). The Cu catalyst system works without 2,2,6,6‐tetramethyl‐l‐piperidinoxyl (TEMPO) at ambient pressure and temperature, and displays activity for un‐activated secondary alcohols, which remain a challenging substrate for catalytic aerobic systems. Our work underscores the importance of finding alternative mechanistic pathways for alcohol oxidation, which complement Cu/TEMPO systems, and demonstrate, in this case, a preference for the oxidation of activated secondary over primary alcohols.  相似文献   

4.
The first step in the catalytic oxidation of alcohols by molecular O2, mediated by homogeneous vanadium(V) complexes [LVV(O)(OR)], is ligand exchange. The unusual mechanism of the subsequent intramolecular oxidation of benzyl alcoholate ligands in the 8‐hydroxyquinolinato (HQ) complexes [(HQ)2VV(O)(OCH2C6H4p‐X)] involves intermolecular deprotonation. In the presence of triethylamine, complex 3 (X=H) reacts within an hour at room temperature to generate, quantitatively, [(HQ)2VIV(O)], benzaldehyde (0.5 equivalents), and benzyl alcohol (0.5 equivalents). The base plays a key role in the reaction: in its absence, less than 12 % conversion was observed after 72 hours. The reaction is first order in both 3 and NEt3, with activation parameters ΔH=(28±4) kJ mol?1 and ΔS=(?169±4) J K?1 mol?1. A large kinetic isotope effect, 10.2±0.6, was observed when the benzylic hydrogen atoms were replaced by deuterium atoms. The effect of the para substituent of the benzyl alcoholate ligand on the reaction rate was investigated using a Hammett plot, which was constructed using σp. From the slope of the Hammett plot, ρ=+(1.34±0.18), a significant buildup of negative charge on the benzylic carbon atom in the transition state is inferred. These experimental findings, in combination with computational studies, support an unusual bimolecular pathway for the intramolecular redox reaction, in which the rate‐limiting step is deprotonation at the benzylic position. This mechanism, that is, base‐assisted dehydrogenation (BAD), represents a biomimetic pathway for transition‐metal‐mediated alcohol oxidations, differing from the previously identified hydride‐transfer and radical pathways. It suggests a new way to enhance the activity and selectivity of vanadium catalysts in a wide range of redox reactions, through control of the outer coordination sphere.  相似文献   

5.
6.
A homogeneous PdII catalyst, utilizing a simple and inexpensive amine ligand (TMEDA), allows 2‐alkynoates to be prepared in high yields by an oxidative carbonylation of terminal alkynes and alcohols. The catalyst system overcomes many of the limitations of previous palladium carbonylation catalysts. It has an increased substrate scope, avoids large excesses of alcohol substrate and uses a desirable solvent. The catalyst employs oxygen as the terminal oxidant and can be operated under safer gas mixtures.  相似文献   

7.
8.
We report the first FeII-catalyzed biomimetic aerobic oxidation of alcohols. The principle of this oxidation, which involves several electron-transfer steps, is reminiscent of biological oxidation in the respiratory chain. The electron transfer from the alcohol to molecular oxygen occurs with the aid of three coupled catalytic redox systems, leading to a low-energy pathway. An iron transfer-hydrogenation complex was utilized as a substrate-selective dehydrogenation catalyst, along with an electron-rich quinone and an oxygen-activating Co(salen)-type complex as electron-transfer mediators. Various primary and secondary alcohols were oxidized in air to the corresponding aldehydes or ketones with this method in good to excellent yields.  相似文献   

9.
Self‐assembled copper(II) complexes are described as effective catalysts for nitroaldol (Henry) reactions on water. The protocol involves a heterogeneous process and the catalysts can be recovered and recycled without loss of activity. Further, C2‐symmetric N,N′‐substituted chiral copper(II) salan complexes are found to be more effective catalysts than chiral copper(II) salen complexes for reactions in homogeneous catalysis, with high enantioselectivities. The reactions involve bifunctional catalysis, bearing the properties of a Brønsted base, as well as a Lewis acid, to effect the reaction in the absence of external additives.  相似文献   

10.
The oxidative cleavage of 1,2‐diols is a fundamental organic transformation. The stoichiometric oxidants that are still predominantly used for such oxidative cleavage, such as H5IO6 , Pb(OAc)4 , and KMnO4 , generate stoichiometric hazardous waste. Herein, we describe a widely applicable and highly selective silver(I)‐catalyzed oxidative cleavage of 1,2‐diols that consumes atmospheric oxygen as the sole oxidant, thus serving as a potentially greener alternative to the classical transformations.  相似文献   

11.
12.
13.
A silver(I)‐catalyzed three‐component reaction of propargylic alcohols, CO2, and monohydric alcohols was successfully developed for the synthesis of β‐oxopropyl carbonates. As such, a series of β‐oxopropyl carbonates were exclusively produced in excellent yields (up to 98 %), even under atmospheric pressure of CO2. The silver catalyst works efficiently for both the carboxylative cyclization of propargylic alcohols with CO2 and subsequent transesterification of α‐alkylidene cyclic carbonates with monohydric alcohols; thus this tandem process performs smoothly under mild conditions. This work provides a versatile and thermodynamically favorable approach to dissymmetric dialkyl carbonates.  相似文献   

14.
《中国化学》2018,36(1):15-19
An aerobic oxidation of aldehydes towards carboxylic acids in MeCN using 1 atm of pure oxygen or oxygen in air as the oxidant and a catalytic amount of single component catalyst, Fe(NO3)3 · 9H2O, has been developed. Carboxylic acids with different synthetically useful functional groups were obtained at room temperature. Two mechanistic pathways have been proposed based on isotopic labeling, NMR monitoring, and control experiments. The practicality of this reaction has been demonstrated by conducting several 50 mmol‐scale reactions using pure oxygen or an air‐flow of ~30 mL/min.  相似文献   

15.
The study of manganese complexes as water‐oxidation catalysts (WOCs) is of great interest because they can serve as models for the oxygen‐evolving complex of photosystem II. In most of the reported Mn‐based WOCs, manganese exists in the oxidation states III or IV, and the catalysts generally give low turnovers, especially with one‐electron oxidants such as CeIV. Now, a different class of Mn‐based catalysts, namely manganese(V)–nitrido complexes, were explored. The complex [MnV(N)(CN)4]2− turned out to be an active homogeneous WOC using (NH4)2[Ce(NO3)6] as the terminal oxidant, with a turnover number of higher than 180 and a maximum turnover frequency of 6 min−1. The study suggests that active WOCs may be constructed based on the MnV(N) platform.  相似文献   

16.
17.
18.
19.
Functionalized spiroacetals have been easily prepared in a one‐pot three‐component coupling process that involves the reaction of pentynol derivatives, salicylaldehydes, and amines in the presence of catalytic amounts of a palladium(II) complex (see scheme). Alternatively, oxygen‐substituted spiroacetals can be obtained by using orthoesters as the third component.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号