首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A highly efficient, diastereoselective, iron(III)‐catalyzed intramolecular hydroamination/cyclization reaction involving α‐substituted amino alkenes is described. Thus, enantiopure trans‐2,5‐disubstituted pyrrolidines and trans‐5‐substituted proline derivatives were synthesized by means of a combination of enantiopure starting materials, easily available from l ‐α‐amino acids, with sustainable metal catalysts such as iron(III) salts. The scope of this methodology is highlighted in an enantiodivergent approach to the synthesis of both (+)‐ and (?)‐pyrrolidine 197B alkaloids from l ‐glutamic acid. In addition, a computational study was carried out to gain insight into the complete diastereoselectivity of the transformation.  相似文献   

2.
We synthesized and carried out the conformational analysis of several hybrid dipeptides consisting of an α‐amino acid attached to a quaternary glyco‐β‐amino acid. In particular, we combined a S‐glycosylated β2,2‐amino acid and two different types of α‐amino acid, namely, aliphatic (alanine) and aromatic (phenylalanine and tryptophan) in the sequence of hybrid α/β‐dipeptides. The key step in the synthesis involved the ring‐opening reaction of a chiral cyclic sulfamidate, inserted in the peptidic sequence, with a sulfur‐containing nucleophile by using 1‐thio‐β‐D ‐glucopyranose derivatives. This reaction of glycosylation occurred with inversion of configuration at the quaternary center. The conformational behavior in aqueous solution of the peptide backbone and the glycosidic linkage for all synthesized hybrid glycopeptides was analyzed by using a protocol that combined NMR experiments and molecular dynamics with time‐averaged restraints (MD‐tar). Interestingly, the presence of the sulfur heteroatom at the quaternary center of the β‐amino acid induced θ torsional angles close to 180° (anti). Notably, this value changed to 60° (gauche) when the peptidic sequence displayed aromatic α‐amino acids due to the presence of CH–π interactions between the phenyl or indole ring and the methyl groups of the β‐amino acid unit.  相似文献   

3.
The enantiomers of the anions of five α‐hydroxy acids, namely lactic acid, α‐hydroxybutyric acid, 2‐hydroxycaproic acid, 2‐hydroxyoctanoic acid and 2‐hydroxydecanoic acid, as well as the two α‐amino acids aspartic acid and glutamic acid, were baseline separated and detected by CE with contactless conductivity detection. Vancomycin was employed as chiral selector and could be used with conductivity detection without having to resort to a partial filling protocol as needed when this reagent is used with UV absorbance measurements. The procedure was successfully applied to the determination of the lactic acid enantiomers in samples of milk and yogurt. Linearity was achieved in the concentration range of 10–500 μmol/L with good correlation coefficients (0.9993 and 0.9990 for L ‐ and D ‐lactic acid, respectively). The LODs (3 S/N) for L ‐ and D ‐lactic acid were determined as 2.8 and 2.4 μmol/L, respectively.  相似文献   

4.
l to d conversion of unactivated α‐amino acids was achieved by solubility‐induced diastereomer transformation (SIDT). Ternary complexes of an α‐amino acid with 3,5‐dichlorosalicylaldehyde and a chiral guanidine (derived from corresponding chiral vicinal diamine) were obtained in good yield as diastereomerically pure imino acid salt complexes and were hydrolysed to obtain enantiopure α‐amino acids. A combination of DFT computation, NMR spectroscopy, and crystal structure provide detailed insight into how two types of strong hydrogen bonds assist in rapid epimerization of the complexes that is essential for SIDT.  相似文献   

5.
The determination of α‐ketoacid concentration is demanded to evaluate the absorption and metabolic behavior of compound α‐ketoacid tablets taken by chronic kidney disease patients. To eliminate the interference of endogenous substance of urine and enrich the analytes, a three‐phase hollow‐fiber liquid‐phase microextraction combined with ion‐pair high‐performance liquid chromatography method was established for the determination of d ,l ‐α‐hydroxymethionine calcium, d ,l ‐α‐ketoisoleucine calcium, α‐ketovaline calcium, α‐ketoleucine calcium, and α‐ketophenylalanine calcium of compound α‐ketoacid tablets in human urine samples. The extraction parameters, such as organic solvent, pH of donor phase and acceptor phase, stirring rate, and extraction time were optimized. Under the optimal conditions, the obtained enrichment factors were up to 11‐, 110‐, 198‐, 202‐, and 50‐fold, respectively. The calibration curves for these analytes were linear over the range of 0.1–10 mg/L for α‐ketovaline calcium, d ,l ‐α‐ketoisoleucine calcium, and α‐ketoleucine calcium, 0.5–10 mg/L for d ,l ‐α‐hydroxymethionine calcium, and α‐ketophenylalanine calcium with r > 0.99. The relative standard deviations (n = 5) were less than 6.27% and the LODs were 100.7, 10.0, 5.8, 7.8, and 8.6 μg/L (based on S/N = 3), respectively. Good recoveries from spiked urine samples (92–118%) were obtained. The proposed method demonstrated excellent sample clean‐up and analytes enrichment to determine the five components in human urine.  相似文献   

6.
The synthesis of all 20 common natural proteinogenic and 4 otherα‐amino acid‐isosteric α‐amino tetrazoles has been accomplished, whereby the carboxyl group is replaced by the isosteric 5‐tetrazolyl group. The short process involves the use of the key Ugi tetrazole reaction followed by deprotection chemistries. The tetrazole group is bioisosteric to the carboxylic acid and is widely used in medicinal chemistry and drug design. Surprisingly, several of the common α‐amino acid‐isosteric α‐amino tetrazoles are unknown up to now. Therefore a rapid synthetic access to this compound class and non‐natural derivatives is of high interest to advance the field.  相似文献   

7.
α‐Amino phosphonic acid derivatives are considered to be the most important structural analogues of α‐amino acids and have a very wide range of applications. However, approaches for the catalytic asymmetric synthesis of such useful compounds are very limited. In this work, simple, efficient, and versatile organocatalytic asymmetric 1,2‐addition reactions of α‐isothiocyanato phosphonate were developed. Through these processes, derivatives of β‐hydroxy‐α‐amino phosphonic acid and α,β‐diamino phosphonic acid, as well as highly functionalized phosphonate‐substituted spirooxindole, can be efficiently constructed (up to 99 % yield, d.r. >20:1, and >99 % ee). This novel method provides a new route for the enantioselective functionalization of α‐phosphonic acid derivatives.  相似文献   

8.
Many peptides and proteins with large sequences and structural differences self‐assemble into disease‐causing amyloids that share very similar biochemical and biophysical characteristics, which may contribute to their cross‐interaction. Here, we demonstrate how the self‐assembled, cyclic d,l ‐α‐peptide CP‐2 , which has similar structural and functional properties to those of amyloids, acts as a generic inhibitor of the Parkinson′s disease associated α‐synuclein (α‐syn) aggregation to toxic oligomers by an ?off‐pathway“ mechanism. We show that CP‐2 interacts with the N‐terminal and the non‐amyloid‐β component region of α‐syn, which are responsible for α‐syn′s membrane intercalation and self‐assembly, thus changing the overall conformation of α‐syn. CP‐2 also remodels α‐syn fibrils to nontoxic amorphous species and permeates cells through endosomes/lysosomes to reduce the accumulation and toxicity of intracellular α‐syn in neuronal cells overexpressing α‐syn. Our studies suggest that targeting the common structural conformation of amyloids may be a promising approach for developing new therapeutics for amyloidogenic diseases.  相似文献   

9.
In recent years β‐amino acids have increased their importance enormously in defining secondary structures of β‐peptides. Interest in β‐amino acids raises the question: Why and how did nature choose α‐amino acids for the central role in life? In this article we present experimental results of MS and 31P NMR methods on the chemical behavior of N‐phosphorylated α‐alanine, β‐alanine, and γ‐amino butyric acid in different solvents. N‐Phosphoryl α‐alanine can self‐assemble to N‐phosphopeptides either in water or in organic solvents, while no assembly was observed for β‐ or γ‐amino acids. An intramolecular carboxylic–phosphoric mixed anhydride (IMCPA) is the key structure responsible for their chemical behaviors. Relative energies and solvent effects of three isomers of IMCPA derived from α‐alanine (2a–c), with five‐membered ring, and five isomers of IMCPA derived from β‐alanine (4a–e), with six‐membered ring, were calculated with density functional theory at the B3LYP/6‐31G** level. The lower relative energy (3.2 kcal/mol in water) of 2b and lower energy barrier for its formation (16.7 kcal/mol in water) are responsible for the peptide formation from N‐phosphoryl α‐alanine. Both experimental and theoretical studies indicate that the structural difference among α‐, β‐, and γ‐amino acids can be recognized by formation of IMCPA after N‐phosphorylation. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 232–241, 2003  相似文献   

10.
Herein we report acid‐directed β‐C(sp3)‐H arylation of α‐amino acids enabled by pyridine‐type ligands. This reaction does not require the installation of an exogenous directing group, is scalable, and enables the preparation of Fmoc‐protected unnatural amino acids in three steps. The pyridine‐type ligands are crucial for the development of this new C(sp3)‐H arylation.  相似文献   

11.
The organocatalytic properties of unnatural α‐amino acids are reviewed. Post‐translational derivatives of natural α‐amino acids include 4‐hydroxy‐l ‐proline and 4‐amino‐l ‐proline scaffolds, and also proline homologues. The activity of synthetic unnatural α‐amino acid‐based organocatalysts, such as β‐alkyl alanines, alanine‐based phosphines, and tert‐leucine derivatives, are reviewed herein. The organocatalytic properties of unnatural monocyclic, bicyclic, and tricyclic proline derivatives are also reviewed. Several families of these organocatalysts permit the efficient and stereoselective synthesis of complex natural products. Most of the reviewed organocatalysts accelerate the reported reactions through covalent interactions that raise the HOMO (enamine intermediates) or lower the LUMO (iminium intermediates).  相似文献   

12.
An efficient ligand design strategy towards boosting asymmetric induction was proposed, which simply employed inorganic nanosheets to modify α‐amino acids and has been demonstrated to be effective in vanadium‐catalyzed epoxidation of allylic alcohols. Here, the strategy was first extended to zinc‐catalyzed asymmetric aldol reaction, a versatile bottom‐up route to make complex functional compounds. Zinc, the second‐most abundant transition metal in humans, is an environment‐friendly catalytic center. The strategy was then further proved valid for organocatalyzed metal‐free asymmetric catalysis, that is, α‐amino acid catalyzed asymmetric aldol reaction. Visible improvement of enantioselectivity was experimentally achieved irrespective of whether the nanosheet‐attached α‐amino acids were applied as chiral ligands together with catalytic ZnII centers or as chiral catalysts alone. The layered double hydroxide nanosheet was clearly found by theoretical calculations to boost ee through both steric and H‐bonding effects; this resembles the role of a huge and rigid substituent.  相似文献   

13.
The racemization of d ‐aspartic acid to l ‐aspartic acid has been successfully performed with a coupled enzyme system at 90 °C and a pH of about 4.0 by the assay of high‐performance liquid chromatography. This coupled enzymatic racemization is a successive two‐step reaction first induced by d ‐amino acid oxidase and a subsequent coupled reaction by an aminotransferase clonezyme with the help of coenzyme pyridoxal 5′‐phosphate and cosubstrate l ‐glutamate. Due to the very high temperature, part of the l ‐aspartic acid is produced by the thermal effect. In fact the thermal racemization for aspartic acid can proceed from either d ‐ or l ‐aspartic acid via an intermediate fumaric acid and leads to the formation of d ,l ‐malic acid. The formation of α‐oxalacetic acid formed irreversibly from d ‐aspartic acid with d ‐amino acid oxidase can induce a side reaction to l ‐alanine. The thermal effect may also be responsible for the production of d ‐, and l ‐alanine.  相似文献   

14.
α‐Methyl glutamic acid (L ‐L )‐, (L ‐D )‐, (D ‐L )‐, and (D ‐D )‐γ‐dimers were synthesized from L ‐ and D ‐glutamic acids, and the obtained dimers were subjected to polycondensation with 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride and 1‐hydroxybenzotriazole hydrate as condensation reagents. Poly‐γ‐glutamic acid (γ‐PGA) methyl ester with the number‐average molecular weights of 5000∼20,000 were obtained by polycondensation in N,N‐dimethylformamide in 44∼91% yields. The polycondensation of (L ‐L )‐ and (D ‐D )‐dimers afforded the polymers with much larger |[α]D | compared with the corresponding dimers. The polymer could be transformed into γ‐PGA by alkaline hydrolysis or transesterification into α‐benzyl ester followed by hydrogenation. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 732–741, 2001  相似文献   

15.
Four putative functionalized α‐chloroakyllithiums RCH2CHLiCl, where R=CHCH2 ( 18 a ), CCH ( 18 b ), CH2OBn ( 18 c ), and CH[O(CH2)2O] ( 18 d ), were generated in situ by sulfoxide–lithium exchange from α‐chlorosulfoxides, and investigated for the stereospecific reagent‐controlled homologation (StReCH) of phenethyl and 2‐chloropyrid‐5‐yl ( 17 ) pinacol boronic esters. Deuterium labeling experiments revealed that αchloroalkyllithiums are quenched by proton transfer from their αchlorosulfoxide precursors and it was established that this effect compromises the yield of StReCH reactions. Use of α‐deuterated α‐chlorosulfoxides was discovered to ameliorate the problem by retarding the rate of acid‐base chemistry between the carbenoid and its precursor. Carbenoids 18 a and 18 b showed poor StReCH efficacy, particularly the propargyl group bearing carbenoid 18 b , the instability of which was attributed to a facile 1,2‐hydride shift. By contrast, 18 d , a carbenoid that benefits from a stabilizing interaction between O and Li atoms gave good StReCH yields. Boronate 17 was chain extended by carbenoids 18 a , 18 b , and 18 d in 16, 0, and 68 % yield, respectively; α‐deuterated isotopomers D ‐ 18 a and D ‐ 18 d gave yields of 33 and 79 % for the same reaction. Double StReCH of 17 was pursued to target contiguous stereodiads appropriate for the total synthesis of (?)‐epibatidine ( 15 ). One‐pot double StReCH of boronate 17 by two exposures to (S)‐D ‐ 18 a (≤66 % ee), followed by work‐up with KOOH, gave the expected stereodiad product in 16 % yield (d.r.~67:33). The comparable reaction using two exposures to (S)‐D ‐ 18 d (≤90 % ee) delivered the expected bisacetal containing stereodiad (R,R)‐DD ‐ 48 in 40 % yield (≥98 % ee, d.r.=85:15). Double StReCH of 17 using (S)‐D ‐ 18 d (≤90 % ee) followed by (R)‐D ‐ 18 d (≤90 % ee) likewise gave (R,S)‐DD ‐ 48 in 49 % yield (≥97 % ee, d.r.=79:21). (R,S)‐DD ‐ 48 was converted to a dideuterated isotopomer of a synthetic intermediate in Corey’s synthesis of 15 .  相似文献   

16.
This review describes our recent works on the diastereo‐ and enantioselective synthesis of anti‐β‐hydroxy‐α‐amino acid esters using transition‐metal–chiral‐bisphosphine catalysts. A variety of transition metals, namely ruthenium (Ru), rhodium (Rh),iridium (Ir), and nickel (Ni), in combination with chiral bisphosphines, worked well as catalysts for the direct anti‐selective asymmetric hydrogenation of α‐amino‐β‐keto ester hydrochlorides, yielding anti‐β‐hydroxy‐α‐amino acid esters via dynamic kinetic resolution (DKR) in excellent yields and diastereo‐ and enantioselectivities. The Ru‐catalyzed asymmetric hydrogenation of α‐amino‐β‐ketoesters via DKR is the first example of generating anti‐β‐hydroxy‐α‐amino acids. Complexes of iridium and axially chiral bisphosphines catalyze an efficient asymmetric hydrogenation of α‐amino‐β‐keto ester hydrochlorides via dynamic kinetic resolution. A homogeneous Ni–chiral‐bisphosphine complex also catalyzes an efficient asymmetric hydrogenation of α‐amino‐β‐keto ester hydrochlorides in an anti‐selective manner. As a related process, the asymmetric hydrogenation of the configurationally stable substituted α‐aminoketones using a Ni catalyst via DKR is also described.  相似文献   

17.
A new, easy, and highly enantioselective method for the synthesis of quaternary α‐alkyl‐α‐amino acids based on organocatalysis is reported. The addition of oxazolones to 1,1‐bis(phenylsulfonyl)ethylene is efficiently catalyzed by simple chiral bases or thioureas. The reaction affords α,α‐disubstituted α‐amino acid derivatives with complete C4 regioselectivity and with excellent yields and enantioselectivities. This methodology is complementary to previously reported enantioselective approaches to quaternary α‐amino acids and allows the synthesis of α‐phenyl‐α‐alkyl‐α‐amino acids and α‐tert‐butyl‐α‐alkyl‐α‐amino acids. It has distinct advantages in terms of operational simplicity, enviromentally friendly conditions, and suitability for large‐scale reactions.  相似文献   

18.
An improved and practical procedure for the stereoselective synthesis of anti‐β‐hydroxy‐α‐amino acids (anti‐βhAAs), by palladium‐catalyzed sequential C(sp3)?H functionalization directed by 8‐aminoquinoline auxiliary, is described. followed by a previously established monoarylation and/or alkylation of the β‐methyl C(sp3)?H of alanine derivative, β‐acetoxylation of both alkylic and benzylic methylene C(sp3)?H bonds affords various anti‐β‐hydroxy‐α‐amino acid derivatives. As an example, the synthesis of β‐mercapto‐α‐amino acids, which are highly important to the extension of native chemical ligation chemistry beyond cysteine, is described. The synthetic potential of this protocol is further demonstrated by the synthesis of diverse β‐branched α‐amino acids. The observed diastereoselectivities are strongly influenced by electronic effects of aromatic AAs and steric effects of the linear side‐chain AAs, which could be explained by the competition of intramolecular C?OAc bond reductive elimination from PdIV intermediates vs. intermolecular attack by an external nucleophile (AcO?) in an SN2‐type process.  相似文献   

19.
Available α‐amino acids undergo arylation at their α position in an enantioselective manner on treatment with base of N′‐aryl urea derivatives ligated to pseudoephedrine as a chiral auxiliary. In situ silylation and enolization induces diastereoselective migration of the N′‐aryl group to the α position of the amino acid, followed by ring closure to a hydantoin with concomitant explulsion of the recyclable auxiliary. The hydrolysis of the hydantoin products provides derivatives of quaternary amino acids. The arylation avoids the use of heavy‐metal additives, and is successful with a range of amino acids and with aryl rings of varying electronic character.  相似文献   

20.
A method is described to separate α‐ from β‐arylalanines by ligand exchange chromatography on a nickel nitrilotriacetate agarose column with UV monitoring of the effluent. Separate mixtures containing an α‐ and β‐arylalanine pair (1 mg of each) were individually loaded onto the nickel resin pre‐equilibrated with the mobile phase at room temperature, and the amino acids were eluted from the column with a gradient from pH 12.0–8.0. The β‐arylalanines eluted first, followed by the α‐isomers. The four α/β‐amino acid pairs tested were well separated with baseline resolution. An aliquot of each fraction was chemically treated to derivatize the amino acids to their N‐acyl methyl ester analogs, and their identities were confirmed by GC/MS analysis. The sample recovery was quantitative (>98%), and the column matrix was very resilient, as demonstrated by consistent separation of the solutes after ~100 preparative cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号