首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA encoded libraries (DEL) have shown promise as a valuable technology for democratizing the hit discovery process. Although DEL provides relatively inexpensive access to libraries of unprecedented size, their production has been hampered by the idiosyncratic needs of the encoding DNA tag relegating DEL compatible chemistry to dilute aqueous environments. Recently reversible adsorption to solid support (RASS) has been demonstrated as a promising method to expand DEL reactivity using standard organic synthesis protocols. Here we demonstrate a suite of on-DNA chemistries to incorporate medicinally relevant and C−S, C−P and N−S linkages into DELs, which are underrepresented in the canonical methods.  相似文献   

2.
DNA encoded chemical libraries (DELs) link the powers of genetics and chemical synthesis via combinatorial optimization. Through combinatorial chemistry, DELs can grow to the unprecedented size of billions to trillions. To take full advantage of the DEL approach, linking the power of genetics directly to chemical structures would offer even greater diversity in a finite chemical world. Natural products have evolved an incredible structural diversity along with their biological evolution. Herein, we used traditional Chinese medicines (TCMs) as examples in a late‐stage modification toolbox approach to annotate these complex organic compounds with amplifiable DNA barcodes, which could be easily incorporated into a DEL. The method of end‐products labeling also generates a cluster of isomers with a single DNA tag at different sites. These isomers provide an additional spatial diversity for multiple accessible pockets of targeted proteins. Notably, a novel PARP1 inhibitor from TCM has been identified from the natural products enriched DEL (nDEL).  相似文献   

3.
Transition‐metal‐catalyzed carbonylation with CO gas occupies a privileged position in organic synthesis for the synthesis of carbonyl compounds. Although this attractive and useful chemistry has led many researchers to investigate carbonylative transformations of various organic (pseudo)halides, C?S‐cleaving carbonylation of organosulfur compounds has been fairly limited. Recently, a broad spectrum of C?S‐cleaving transformations has been emerging in the field of cross‐coupling. In light of the importance of carbonyl compounds as well as considerable advancement for employing organosulfur compounds as competent surrogates of (pseudo)halides, carbonylative transformations of C?S bonds should be of high value. This Minireview focuses on catalytic C?S carbonylation of organosulfur compounds with CO or its equivalents. In addition, reductive carboxylation of C?S bonds with CO2 is described.  相似文献   

4.
Full control over multiple competing coupling sites would enable straightforward access to densely functionalized compound libraries. Historically, the site selection in Pd0‐catalyzed functionalizations of poly(pseudo)halogenated arenes has been unpredictable, being dependent on the employed catalyst, the reaction conditions, and the substrate itself. Building on our previous report of C?Br‐selective functionalization in the presence of C?OTf and C?Cl bonds, we herein complete the sequence and demonstrate the first general arylations and alkylations of C?OTf bonds (in <10 min), followed by functionalization of the C?Cl site (in <25 min), at room temperature using the same air‐ and moisture‐stable PdI dimer. This allowed the realization of the first general and triply selective sequential C?C coupling (in 2D and 3D space) of C?Br followed by C?OTf and then C?Cl bonds.  相似文献   

5.
DNA-encoded libraries (DEL) are increasingly being used to identify new starting points for medicinal chemistry in drug discovery. Herein, we discuss the development of methods that allow the conversion of both primary amines and anilines, attached to DNA, to their corresponding azides in excellent yields. The scope of these diazo-transfer reactions was investigated, and a proof-of-concept has been devised to allow for the synthesis of macrocycles on DNA.  相似文献   

6.
DNA-encoded library technology (DELT) employs DNA as a barcode to track the sequence of chemical reactions and enables the design and synthesis of libraries with billions of small molecules through combinatorial expansion. This powerful technology platform has been successfully demonstrated for hit identification and target validation for many types of diseases. As a highly integrated technology platform, DEL is capable of accelerating the translation of synthetic chemistry by using on-DNA compatible reactions or off-DNA scaffold synthesis. Herein, we report the development of a series of novel on-DNA transformations based on oxindole scaffolds for the design and synthesis of diversity-oriented DNA-encoded libraries for screening. Specifically, we have developed 1,3-dipolar cyclizations, cyclopropanations, ring-opening of reactions of aziridines and Claisen–Schmidt condensations to construct diverse oxindole derivatives. The majority of these transformations enable a diversity-oriented synthesis of DNA-encoded oxindole libraries which have been used in the successful hit identification for three protein targets. We have demonstrated that a diversified strategy for DEL synthesis could accelerate the application of synthetic chemistry for drug discovery.

Constructing DNA-encoded oxindole libraries by a diversified strategy.  相似文献   

7.
Electrocatalysis has been identified as a powerful strategy for organometallic catalysis, and yet electrocatalytic C?H activation is restricted to strongly N‐coordinating directing groups. The first example of electrocatalytic C?H activation by weak O‐coordination is presented, in which a versatile ruthenium(II) carboxylate catalyst enables electrooxidative C?H/O?H functionalization for alkyne annulations in the absence of metal oxidants; thereby exploiting sustainable electricity as the sole oxidant. Mechanistic insights provide strong support for a facile organometallic C?H ruthenation and an effective electrochemical reoxidation of the key ruthenium(0) intermediate.  相似文献   

8.
Rhodium PCcarbeneP complexes 1‐L {L=PPh3, PPh2(C6F5)} react with isothiocyanate, carbodiimide and disulphide to enable C?S, C?N and S?S bond cleavage. The cleaved molecules are sequestered by the metal center and the pincer alkylidene linkage, forming η2‐coordinated sulfide or imide centered pincer complexes. When a C?S or S?S bond is cleaved, the resulting complexes can bridge two rhodium centers through sulphur forming dimeric complexes and eliminating a monodentate phosphine ligand.  相似文献   

9.
This report widens the repertoire of emerging PdI catalysis to carbon–heteroatom, that is, C?S bond formation. While Pd0‐catalyzed protocols may suffer from the formation of poisonous sulfide‐bound off‐cycle intermediates and lack of selectivity, the mechanistically diverse PdI catalysis concept circumvents these challenges and allows for C?S bond formation (S–aryl and S–alkyl) of a wide range of aryl halides. Site‐selective thiolations of C?Br sites in the presence of C?Cl and C?OTf were achieved in a general and a priori predictable fashion. Computational, spectroscopic, X‐ray, and reactivity data support dinuclear PdI catalysis to be operative. Contrary to air‐sensitive Pd0, the active PdI species was easily recovered in the open atmosphere and subjected to multiple rounds of recycling.  相似文献   

10.
Effective linkage of DNA onto metal surfaces plays a crucial role in the applications of DNA as electrochemical recognition, signal output and amplification devices for gene and protein detections, specific analyte recognitions, catalysis, and so on. Here we report a promising and operationally simple approach for the construction of double‐stranded DNA‐linked Au interface via Au?C bond (RdsDNA‐C?Au), upon efficient in situ cleavage of trimethylsilyl end group of 4‐[(trimethylsilyl) ethynyl] benzoic acid and subsequent dehydration condensation between NH2‐modified DNA and benzoic acid. Due to the introduction of large conjugated π group (4‐carboxyphenylethynyl) as the “bridge bond”, the conductivity of the RdsDNA‐C?Au interface is greatly improved. As a result, under commonly used DNA packing density (>0.5 pmol cm?2), the surface‐confined electron transfer at the interface is simply mediated by the stacked‐bases of dsDNA, independent of the orientation of dsDNA (tethered to the electrode at 5′‐ or 3′‐end). Also, compared to the traditional RdsDNA‐S?Au interface via alkanethiol linker, the RdsDNA‐C?Au interface displays more sensitive electrochemical response and excellent stability. Due to the better stability, conductivity and simple electron transfer mechanism, the RdsDNA‐C?Au interface is anticipated to be widely used in electrochemistry‐involved molecular recognitions, gene and protein detections with higher sensitivity and accuracy.  相似文献   

11.
Transition metal‐catalyzed isocyanide insertion has served as a fundamental and important chemical transformation. Classical isocyanide insertion usually occurs between organohalides and nucleophiles, which normally involves tedious and non‐atom‐economical prefunctionalization processes. However, oxidative C?H/N?H isocyanide insertion offers an efficient and green alternative. Herein, a nickel‐catayzed oxidative C?H/N?H isocyanide insertion of aminoquinoline benzamides has been developed. Different kinds of iminoisoindolinone derivatives could be synthesized in good yields by utilizing Ni(acac)2 as the catalyst. In this transformation, isocyanide serves as an efficient C1 connector, which further inserted into two simple nucleophiles (C?H/N?H), representing an effective way to construct heterocycles.  相似文献   

12.
DNA-encoded library (DEL) technologies are transforming the drug discovery process, enabling the identification of ligands at unprecedented speed and scale. DEL makes use of libraries that are orders of magnitude larger than traditional high-throughput screens. While a DNA tag alludes to a genotype–phenotype connection that is exploitable for molecular evolution, most of the work in the field is performed with libraries where the tag serves as an amplifiable barcode but does not allow “translation” into the synthetic product it is linked to. In this Review, we cover technologies that enable the “translation” of the genetic tag into synthetic molecules, both biochemically and chemically, and explore how it can be used to harness Darwinian evolutionary pressure.  相似文献   

13.
A mixed directing‐group strategy for inexpensive [Co(acac)3]‐catalyzed oxidative C?H/C?H bond arylation of unactivated arenes has been disclosed. This strategy enables the arylation of a wide range of benzamide and arylpyridines effectively to afford novel bifunctionalized biaryls, which are difficult to achieve by common synthetic routes. Two different pathways, namely, a single‐electron‐transmetalation process (8‐aminoquinoline‐directed) and a concerted metalation–deprotonation process (pyridine‐directed), were involved to activate two different inert aromatic C?H bonds. Moreover, the aryl radicals have been trapped by 2,6‐di‐tert‐butyl‐4‐methylphenol to form benzylated products. This unique strategy should be useful in the design of other arene C?H/C?H cross‐couplings as well.  相似文献   

14.
The reversibly formed C?N bond plays a very important role in dynamic covalent chemistry and the C?N/C?N exchange of components between different imine constituents to create dynamic covalent libraries has been extensively used. To facilitate diversity generation, we have investigated an organocatalyzed approach, using L ‐proline as catalyst, to accelerate the formation of dynamic libraries of [n×n] imine components. The organocatalysis methodology has also been extended, under somewhat modified conditions, to reversible C?C/C?N exchange processes between Knoevenagel derivatives of barbituric acid and imines, allowing for the generation of increased diversity.  相似文献   

15.
Under an atmosphere of dioxygen, copper‐catalyzed de‐alkylation/amination sequences provide sulfonimidamides from unprotected sulfoximines in moderate to good yields. Mechanistic studies suggest the involvement of radicals in both the C?S bond cleavage and the formation of the new N?S bond.  相似文献   

16.
A Cu‐catalyzed cascade oxidative radical process of β‐keto sulfones with alcohols has been achieved by using oxygen as an oxidant. In this reaction, β‐keto sulfones were converted into sulfinate esters under the oxidative conditions via cleavage of C?S bond. Experimental and computational studies demonstrate that a new pathway is involved in this reaction, which proceeds through the formation of the key four‐coordinated CuII intermediate, O?O bond homolysis induced C?S bond cleavage and Cu‐catalyzed esterification to form the final products. This reaction provides a new strategy to sulfonate esters and enriches the research content of C?S bond cleavage and transformations.  相似文献   

17.
In recent years, there has been an increasing interest in using alcohols as alkylating agents for C?C and C?N bond‐forming processes employing mainly TM‐catalysts. Although BH‐catalysis looks like a green atom economy process since water is the only by‐product, it often suffers from one or more drawbacks, such as the use of expensive noble metal complexes, capricious ligands, and toxic organic solvents. Therefore, straightforward, efficient, atom economy and environmentally benign alternative protocols are desirable. This review aims to summarize the current knowledge within the published literature about dehydrative processes developed without TM‐catalysts. The most recent contributions to this topic have been reviewed keeping into account the new findings reported in this area. The features, strengths, and limitations of these alcohol‐based C?C and C?N bond‐forming processes has also been taken into account.  相似文献   

18.
DNA-encoded library (DEL) technology has the potential to dramatically expedite hit identification in drug discovery owing to its ability to perform protein affinity selection with millions or billions of molecules in a few experiments. To expand the molecular diversity of DEL, it is critical to develop different types of DNA-encoded transformations that produce billions of molecules with distinct molecular scaffolds. Sequential functionalization of multiple C–H bonds provides a unique avenue for creating diversity and complexity from simple starting materials. However, the use of water as solvent, the presence of DNA, and the extremely low concentration of DNA-encoded coupling partners (0.001 M) have hampered the development of DNA-encoded C(sp3)–H activation reactions. Herein, we report the realization of palladium-catalyzed C(sp3)–H arylation of aliphatic carboxylic acids, amides and ketones with DNA-encoded aryl iodides in water. Notably, the present method enables the use of alternative sets of monofunctional building blocks, providing a linchpin to facilitate further setup for DELs. Furthermore, the C–H arylation chemistry enabled the on-DNA synthesis of structurally-diverse scaffolds containing enriched C(sp3) character, chiral centers, cyclopropane, cyclobutane, and heterocycles.

DNA-compatible C(sp3)–H activation reactions of aliphatic carboxylic acids, amides, and ketones were developed for efficient access to DEL synthesis.  相似文献   

19.
The amide bond N?C activation represents a powerful strategy in organic synthesis to functionalize the historically inert amide linkage. This personal account highlights recent remarkable advances in transition‐metal‐free activation of amides by N?C bond cleavage, focusing on both (1) mechanistic aspects of ground‐state‐destabilization of the amide bond enabling formation of tetrahedral intermediates directly from amides with unprecedented selectivity, and (2) synthetic utility of the developed transformations. Direct nucleophilic addition to amides enables a myriad of powerful methods for the formation of C?C, C?N, C?O and C?S bonds, providing a straightforward and more synthetically useful alternative to acyl‐metals.  相似文献   

20.
C?H iodination of aromatic compounds has been accomplished with the aid of sulfinyl directing groups under palladium catalysis. The reaction proceeds selectively at the peri‐position of polycyclic aryl sulfoxides or at the ortho‐position of phenyl sulfoxides. The iodination products can be further converted via iterative catalytic cross‐coupling at the expense of the C?I and C?S bonds. Computational studies suggest that peri‐C?H palladation would proceed via a non‐directed pathway, wherein neither of the sulfur nor oxygen atom of the sulfinyl group coordinates to the palladium before and at the transition state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号