首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palladium nanoparticles supported on MWCNTs (Pd/MWCNTs) were successfully prepared by a simple ethylene glycol reduction method in an oil bath. An electrochemical sensor based on Pd/MWCNTs nanocomposite-modified glassy carbon electrode was fabricated for the determination of methyl parathion by differential pulse voltammetry measurement. A highly linear response to methyl parathion in the concentration ranging from 0.10 μg mL?1 to 14 μg mL?1 was observed, and a detection limit of 0.05 μg mL?1 was obtained with the calculation based on signal/noise?=?3. The present work provides a simple and rapid approach to the detection of methyl parathion.  相似文献   

2.
We report on the construction of a label-free electrochemical immunosensor for detecting the core antigen of the hepatitis C virus (HCV core antigen). A glassy carbon electrode (GCE) was modified with a nanocomposite made from gold nanoparticles, zirconia nanoparticles and chitosan, and prepared by in situ reduction. The zirconia nanoparticles were first dispersed in chitosan solution, and then AuNPs were prepared in situ on the ZrO2-chitosan composite. In parallel, a nanocomposite was synthesized from AuNPs, silica nanoparticles and chitosan, and conjugated to a secondary antibody. The properties of the resulting nanocomposites were investigated by UV-visible photometry and transmission electron microscopy, and the stepwise assembly process was characterized by means of cyclic voltammetry and electrochemical impedance spectroscopy. An sandwich type of immunosensor was developed which displays high sensitivity to the HCV core antigen in the concentration range between 2 and 512?ng?mL?1, with a detection limit of 0.17?ng?mL?1 (at S/N?=?3). This immunosensor provides an alternative approach towards the diagnosis of HCV.
Fig
A sandwich-type immunosensor was constructed for the detection of HCV core Ag. AuNPs/ZrO2-Chits nanocomposites were prepared by in situ reduction method. AuNPs/SiO2-Chits nanocomposite integrated with secondary antibody (Ab2) without labeled HRP. The immunosensor displayed high sensitivity to HCV core antigen with a detection limit of 0.17?ng?mL?1 (S/N?=?3).  相似文献   

3.
Gong J  Miao X  Zhou T  Zhang L 《Talanta》2011,85(3):1344-1349
A sensitive enzymeless organophosphate pesticides (OPs) sensor is fabricated by using Au nanoparticles (AuNPs) decorated graphene nanosheets (GNs) modified glassy carbon electrode as solid phase extraction (SPE). Such a nanostructured composite film, combining the advantages of AuNPs with two dimensional GNs, dramatically facilitates the enrichment of nitroaromatic OPs onto the surface and realizes their stripping voltammetric detection of OPs by using methyl parathion (MP) as a model. The stripping voltammetric performances of captured MP were evaluated by cyclic voltammetric and square-wave voltammetric analysis. The combination of the nanoassembly of AuNPs-GNs, SPE, and stripping voltammetry provides a fast, simple, and sensitive electrochemical method for detecting nitroaromatic OPs. The stripping analysis is highly linear over the MP concentration ranges of 0.001-0.1and 0.2-1.0 μg mL−1 with a detection limit of 0.6 ng mL−1. This designed enzymeless sensor exhibits good reproducibility and acceptable stability.  相似文献   

4.
We report on an electrochemical sensor for the determination of methyl parathion. It is based on an electrode modified with multi-walled carbon nanotubes that were covered with gold nanoparticles (Au-NPs). The vertically aligned array of MWCNTs on a tantalum substrate was coated with Au-NPs by overhead magnetron sputtering deposition. Scanning and transmission electron microscopy and XRD were used to characterize the Au-NP-MWCNTs composite. Cyclic voltammetry and differential pulse voltammetry were employed to evaluate the suitability of the new electrode for the determination of methyl parathion. Under the optimal conditions, the current response of the electrode to methyl parathion is linear in the range from 0.50 to 16.0 mg mL-1, with a detection limit of 50 ??g mL-1 (signal/noise = 3), and the sensitivity is 4.5 times better than that of the plain MWCNTs electrode. We conclude that this method represents a simple, rapid, effective and sensitive approach for the detection of methyl parathion.
Figure
Gold nanoparticles were coated onto vertically aligned carbon nanotubes by over head magnetron sputtering deposition. The Au/MWCNTs electrode exhibits high performance and long term storage stability for eletroanalysis of methyl parathion, showing a linear dependence in methyl parathion concentration from 0.50 to 16.0 ??g·mL-1 and detection limit of 0.050 ??g·mL-1.  相似文献   

5.
Present work demonstrates the fabrication of new and facile sandwich‐type electrochemical immunosensor based on palladium nanoparticles (PdNPs), polyaniline (PANI) and fullerene‐C60 nanocomposite film modified glassy carbon electrode (PdNP@PANI‐C60/GCE) for ultrasensitive detection of Prostate‐specific antigen (PSA) biomarker. PdNP@PANI‐C60 was electrochemically synthesized on GCE and used as an electroactive substrate. PdNP@PANI‐C60 was characterized by scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy (EDS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Primary antibody anti‐PSA (Ab1) was covalently immobilized on PdNP@PANI‐C60/GCE using NHS/EDC linkers. In the presence of PSA antigen, horseradish peroxidase secondary antibody (HRP‐Ab2) was brought into the surface of the electrode, developing stable amplified signals of H2O2 reduction. Under the optimal conditions, a linear curve for determination of PSA at the proposed immunosensor was 1.6×10?4 ng.mL?1 to 38 ng.mL?1 with a limit of detection (LOD) of 1.95×10?5 ng.mL?1. The proposed immunosensor was successfully validated in serum and urine samples towards PSA detection with satisfactory and acceptable results.  相似文献   

6.
An electrochemical sensor was developed for the detection of organophosphate pesticides based on electrodeposition of gold nanoparticles on a multi-walled carbon nanotubes modified glassy carbon electrode. Cyclic voltammetry was employed in the process of electrodeposition. Field emission scanning electron microscope and X-ray diffraction techniques were used for characterization of the composite. Organophosphate pesticides (e.g. parathion) were determined using linear scan voltammetry. A highly linear response to parathion in the concentration range from 6.0?×?10?5 to 5.0?×?10?7 M was observed, with a detection limit of 1.0?×?10?7 M estimated at a signal-to-noise ratio of 3. The method has been applied to the analysis of parathion in real samples.  相似文献   

7.
ABSTRACT

A modified carbon paste electrode has been developed for the determination of Pb(ΙΙ) ions based on Fe3O4/eggshell magnetic nanocomposite. The structure and morphology of Fe3O4/eggshell were analysed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The prepared nanocomposite was also characterized by Fourier transform infrared spectroscopy (FT-IR) and vibrating sample magnetometer (VSM). The electrochemical procedure was based on the accumulation and determination of Pb(ΙΙ) ions at the surface of the modified carbon paste electrode with Fe3O4/eggshell nanocomposites and carbon nanotubes by differential pulse anodic stripping voltammetry (DPASV). Various experimental parameters involved in the preconcentration of Pb(ΙΙ) ions and voltammetric stripping step were studied. Under the optimum conditions, the voltammetric peak current of Pb(ΙΙ) occurs at a potential about ?0.5 V. Also, the voltammetric peak current increased linearly with Pb(ΙΙ) concentration in the range of 0.5–200 ng mL?1 and a detection limit of 0.15 ng mL?1 was obtained for Pb(ΙΙ). The selectivity of the proposed electrode for Pb(ΙΙ) ions in the presence of some cations was also examined. The practical application of the proposed modified electrode was evaluated by the determination of Pb(ΙΙ) ions in human hair and water samples. The results were satisfactory for the spiked samples.  相似文献   

8.
A mesoporous silica-based hybrid material composed of silica xerogel modified with an ionic silsesquioxane, which contains the 1,4-diazoniabicyclo[2.2.2]octane chloride group, was obtained. The silsesquioxane film is highly dispersed on the surface. This hybrid material was utilized to develop a carbon paste electrode (CPE) for determination of methyl parathion. Transmission FTIR, elemental analysis and N2 adsorption–desorption isotherms were used for characterization of the material. The electrochemical behavior of methyl parathion was evaluated by cyclic voltammetry and differential pulse voltammetry. It was observed a linear response to methyl parathion in the concentration range from 1.25 × 10?7 to 2.56 × 10?6 mol L?1 by employing the carbon paste electrode, in Britton–Robinson buffer solution (pH 6). The achieved detection limit (3 SD of the blank divided by the slope of calibration curve) was 0.013 µmol L?1 and sensitivity was 6.3 µA µmol L?1. This result shows the potentiality of this electrode for application as electrochemical sensor for methyl parathion.  相似文献   

9.
A simple strategy has been proposed to quantify Zn2+ ions using CeO2 nanoparticle-modified glassy carbon electrode. The CeO2 nanoparticles were prepared by sucrose-nitrate decomposition method, and it was characterized by X-ray diffraction (XRD), FT-IR, TEM, and surface area analyzer. The synthesized CeO2 nanoparticles were used as modifier molecules as a thin film on glassy carbon electrode (GCE) in the trace level quantification of Zn2+ by using cyclic voltammetry (CV) and differential pulse anodic stripping voltammetry (DPASV) techniques. The fabricated sensor exhibited a good analytical response towards Zn2+ ions. The modified electrode showed a wide linearity in the concentration range 20–380 μg L?1 with a limit of detection 0.36 μg L?1. The proposed electrochemical sensor was successfully applied to trace level Zn2+ quantification from real sample matrices.  相似文献   

10.
A novel electrochemical sensor for methyl parathion based on silicate– cetyltrimethylammonium bromide nanocomposite film has been fabricated by electro-assisted deposition onto glassy carbon electrode in one-step via an electrochemical modulation of pH at the electrode/solution interface to promote controlled gelification of tetraethylorthosilicate sol, and was characterized with scanning electron microscopy, X-ray diffraction, and electrochemical impedance spectroscopy. The electrochemical sensing of methyl parathion on the film-modified electrode was investigated applying cyclic voltammetry and square wave voltammetry. Compared to the unmodified electrode, the shapes of the redox peaks were improved and the peak currents significantly increased. Experimental parameters such as deposition time, pH value, and accumulation conditions have been optimized. A linear relationship between the peak current and methyl parathion concentration was obtained in the range from 1.0 × 10−7 to 1.0 × 10−4 mol L−1 with a detection limit of 1.04 × 10 −8 mol L−1 (S/N = 3) after accumulation at 0 V for 120 s. The film electrode shows great promise for determination of methyl parathion in real samples.   相似文献   

11.
Glassy carbon electrodes (GCE) and carbon paste electrodes (CPE) were modified with imidazole functionalized polyaniline with the aim to develop a sensor for lead (II) in both acidic and basic aqueous solution. The electrodes were characterized by cyclic voltammetry and differential pulse adsorptive stripping voltammetry. The limit of detections obtained with glassy carbon electrode and carbon paste electrode are 20?ng?mL-1 and 2?ng?mL-1 of lead ion, respectively. An interference study was carried out with Cd(II), As(III), Hg(II) and Co(II) ions. Cd(II) ions interfere significantly (peak overlap) and As(III) has a depressing effect on the lead signal. The influence of pH was investigated indicating that bare and modified GCE and CPE show optimum response at pH?4.0 ± 0.05.
Figure
Imidazole functionalized polyaniline modified glassy carbon and carbon paste electrodes were used for lead ion detection by using CV and DPASV techniques. The lower detection limit observed with GCE and CPE are 20?ng mL-1 and 2?ng mL-1.  相似文献   

12.
A chemically modified electrode was constructed for rapid, simple, accurate, selective and highly sensitive simultaneous determination of Cu(II) and Cd(II) using square wave anodic stripping voltammetry. The electrode was prepared by incorporation of SiO2 nanoparticles, coated with a newly synthesized Schiff base, in carbon paste electrode. The limit of detection was found to be 0.28 ng mL?1 and 0.54 ng mL?1 for Cu(II) and Cd(II), respectively. The proposed chemically modified electrode was used for the determination of copper and cadmium in several foodstuffs and water samples.  相似文献   

13.
A sensitive and selective imprinted electrochemical sensor for the determination of aflatoxin B1 (AFB1) was constructed on a glassy carbon electrode by stepwise modification of functional multiwalled carbon nanotubes (MCNTs), Au/Pt bimetallic nanoparticles (Au/PtNPs), and a thin imprinted film. The fabrication of a homogeneous porous poly o-phenylenediamine (POPD)-grafted Au/Pt bimetallic multiwalled carbon nanotubes nanocomposite film was conducted by controllable electrodepositing technology. The sensitivity of the sensor was improved greatly because of the nanocomposite functional layer; the proposed sensor exhibited excellent selectivity toward AFB1 owing to the porous molecular imprinted polymer (MIP) film. The surface morphologies of the modified electrodes were characterized using a scanning electron microscope. The performance of the imprinted sensor was investigated by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy in detail. A linear relationship between the sensor response signal and the logarithm of AFB1 concentrations ranging from 1?×?10?10 to 1?×?10?5 mol L?1 was obtained with a detection limit of 0.03 nmol L?1. It was applied to detect AFB1 in hogwash oil successfully.  相似文献   

14.
《Analytical letters》2012,45(8):1241-1254
A novel electrochemical immunosensor was prepared for the detection of the hepatitis C virus non-structural 5A protein. A glassy carbon electrode was modified with an Au-MoO3/Chitosan nanocomposite that warranted good conductivity and biocompatibility. Mesoporous silica with a large specific surface served as a nanocarrier for horseradish peroxidase and the polyclonal antibody as the reporter probe. The immunosensor was characterized by scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. Following the sandwich-type immunoreaction, horseradish peroxidase was efficiently captured on the surface of the electrode to catalyze the decomposition of hydrogen peroxide. The analytical signal was obtained as an amperometric i-t curve (chronoamperometry). The assay reported here had a wide detection range (1 ng mL?1 ?50 µg mL?1) and detection limit as low as 1 ng mL?1 of hepatitis C virus non-structural 5A protein. The electrochemical biosensor experiments showed excellent reproducibility, high selectivity, and outstanding stability for the determination of hepatitis C virus non-structural 5A protein, and it was successfully applied to the detection of the analyte in real serum samples.  相似文献   

15.
Halosulfuron methyl, a fast-acting herbicide and is absorbed into leaf tissue within 1-2 days and translocated through the vascular system, interrupting amino acid production within the plant, can be detected using glassy carbon electrode the technique of adsorptive stripping voltammetry. The adsorptive stripping voltammetric behavior of halosulfuron methyl was investigated in pH range 1.0-10.0. Halosulfuron methyl was irreversibly oxidized at a glassy carbon electrode. Electrochemical techniques including adsorptive stripping voltammetry and cyclic voltammetry were employed to study the oxidation mechanism. The experimental parameters such as the accumulation potential, accumulation time and frequency were optimized. The linear range, detection limit and quantification for halosulfuron methyl were evaluated by adsorptive stripping voltammetry. Under the optimized conditions, the peak current is linear to halosulfuron methyl concentration in the range 4.1-50.0 μg mL−1. Limit of detection and limit of quantification were 1.23 and 4.10 μg mL−1, respectively. The interference of inorganic species and other some pesticides on the voltammetric response have been studied. The applicability to spiked soil and natural water was described and the recoveries for the standards added are 103.8% and 108.2%, respectively. The method is successfully applied for the determination of halosulfuron methyl in commercial formulation.  相似文献   

16.
We describe a silver(I)-selective carbon paste electrode modified with multi-walled carbon nanotubes and a silver-chelating Schiff base, and its electrochemical response to Ag(I). Effects of reduction potential and time, accumulation time, pH of the solution and the stripping medium were studied by differential pulse anodic stripping voltammetry and optimized. The findings resulted in a method for the determination of silver over a linear response range (from 0.5 to 235 ng?mL?1) and with a detection limit as low as 0.08 ng?mL?1. The sensor displays good repeatability (with the RSD of ±?2.75 % for 7 replicates) and was applied to the determination of Ag(I) in water samples and X-ray photographic films.
Figure
Open circuit accumulation of Ag(I) onto a surface of EHPO-MCPE and determination by Differential pulse anodic stripping voltammetry  相似文献   

17.
《Electroanalysis》2018,30(9):2121-2130
Highly crystallized mesoporous ZrO2 nanomaterials were synthesized by solvent evaporation induced self‐assembly approach. Ordered mesoporous ZrO2 nanomaterials were characterized by TEM, SEM, BET, XRD and UV‐Vis spectroscopy. The obtained nanomaterials exhibit the close‐packing mesopores with average pore size of 7 nm and a highly crystallized framework with tetragonal phase. A non‐enzyme electrochemical sensor based on ordered mesoporous ZrO2 is established for selective detection of methyl parathion (MP). The online extraction of MP is firstly achieved by ZrO2 modified electrode at open‐circuit potential for 5 min., and the sensitive detection of MP is performed by differential pulse voltammetry (DPV) method. By comparison, DPV responses of mesoporous ZrO2 are 40 times and 25 times larger than that of mesoporous silica and mesoporous carbon with the similar pore structure, implying the specific affinity advantage of zirconia to phosphoric group. The quantitative analysis result shows that the voltammetric currents are linear with concentrations of MP ranging from 1 ng/ml to 2 μg/ml with a detection limit of 0.53 ng/ml. The sensor also exhibits good stability and high selectivity against interfering species. The excellent analytical performances are owed to the accessible and uniform mesoporous structures, highly crystallized frameworks of ZrO2 and its specific affinity to phosphate groups.  相似文献   

18.
A sensitive electrochemical stripping voltammetric method for analyzing organophosphate (OP) compounds was developed based on solid-phase extraction (SPE) at zirconia (ZrO2) nanoparticles modified electrode. ZrO2 nanoparticles were proved as a new sorbent for SPE of OP pesticides. Because of the strong affinity of ZrO2 for the phosphoric group, nitroaromatic OPs can strongly bind to the ZrO2 nanoparticle surface. The combination of SPE with square-wave voltammetry (SWV) provided a fast, sensitive, and selective electrochemical method for nitroaromatic OP compounds using methyl parathion (MP) as a model. The stripping response was highly linear over the MP range of 0.003–2.0 μg/mL, with a detection limit of 0.001 μg/mL. The fast extraction ability of ZrO2 nanoparticles makes it promising sorbent for various solid-phase extractions.  相似文献   

19.
A glassy carbon electrode modified with per‐6‐amino‐β‐cyclodextrin (β‐CDNH2) and functionalized single‐walled carbon nanotubes (SWCNT‐COOH) was elaborated. This structure was investigated for the detection of dopamine acid (DA) in presence of ascorbic acid (AA). The sensor behavior was studied by cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy. The analysis results show that the electrode modification with CD derivative improves the sensitivity and selectivity of the DA recognition; the electrochemical response was further improved by introduction of SWCNT‐COOH. The sensor shows good and reversible linear response toward DA within the concentration range of 7×10?7–10?4 M with a detection limit of 5×10?7 M.  相似文献   

20.
In this paper, a thiol graphene‐thiol chitosan‐gold nanoparticles (thGP‐thCTS‐AuNPs) nanocomposites film with porous structure was fabricated by electrochemically depositing on glassy carbon electrode (GCE), which exhibited good biocompatibility and improved conductivity, to construct immunosensor free label for detection of carcinoembryonic antigen (CEA). The electrochemical behavior of this immunosensor was investigated by cyclic voltammetry. Under the optimum conditions, the immunosensor revealed a good amperometric response to CEA in two linear ranges (0.3–8.0 ng mL?1 and 8.0–100 ng mL?1) with a detection limit of 0.03 ng mL?1. The results indicated that the immunosensor has the advantages of good selectivity, high sensitivity, and good stability for the determination of CEA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号