首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Improving product selectivity by controlling the spatial organization of functional sites at the nanoscale is a critical challenge in bifunctional catalysis. We present a series of composite bifunctional catalysts consisting of one-dimensional zeolites (ZSM-22 and mordenite) and a γ-alumina binder, with platinum particles controllably deposited either on the alumina binder or inside the zeolite crystals. The hydroisomerization of n-heptane demonstrates that the catalysts with platinum particles on the binder, which separates platinum and acid sites at the nanoscale, leads to a higher yield of desired isomers than catalysts with platinum particles inside the zeolite crystals. Platinum particles within the zeolite crystals impose pronounced diffusion limitations on reaction intermediates, which leads to secondary cracking reactions, especially for catalysts with narrow micropores or large zeolite crystals. These findings extend the understanding of the “intimacy criterion” for the rational design of bifunctional catalysts for the conversion of low-molecular-weight reactants.  相似文献   

2.
The transformation of n-decane was carried out on bifunctional Pt-HBEA catalysts obtained either by exchange of the HBEA zeolite with Pt, or by mixing various amounts of the HBEA zeolite with a Pt-impregnated alumina. Pt-exchanged HBEA was the most selective catalyst for n-decane isomerisation, which can be explained by a better proximity between acidic and hydrogenating sites and by a fast desorption of monobranched isomers through the small crystallites of the HBEA zeolite.  相似文献   

3.
Confocal fluorescence microscopy was employed to selectively visualize the dispersion and orientation of zeolite ZSM‐5 domains inside a single industrially applied fluid catalytic cracking (FCC) catalyst particle. Large ZSM‐5 crystals served as a model system together with the acid‐catalyzed fluorostyrene oligomerization reaction to study the interaction of plane‐polarized light with these anisotropic zeolite crystals. The distinction between zeolite and binder material, such as alumina, silica, and clay, within an individual FCC particle was achieved by utilizing the anisotropic nature of emitted fluorescence light arising from the entrapped fluorostyrene‐derived carbocations inside the zeolite channels. This characterization approach provides a non‐invasive way for post‐synthesis characterization of an individual FCC catalyst particle in which the size, distribution, orientation, and amount of zeolite ZSM‐5 aggregates can be determined. It was found that the amount of detected fluorescence light originating from the stained ZSM‐5 aggregates corresponds to about 15 wt %. Furthermore, a statistical analysis of the emitted fluorescence light indicated that a large number of the ZSM‐5 domains appeared in small sizes of about 0.015–0.25 μm2, representing single zeolite crystallites or small aggregates thereof. This observation illustrated a fairly high degree of zeolite dispersion within the FCC binder material. However, the highest amount of crystalline material was aggregated into larger domains (ca. 1–5 μm2) with more or less similarly oriented zeolite crystallites. It is clear that this visualization approach may serve as a post‐synthesis quality control on the dispersion of zeolite ZSM‐5 crystallites within FCC particles.  相似文献   

4.
Increasing energy demands have stimulated intense research activities on reversible electrochemical conversion and storage systems with high efficiency, low cost, and environmental benignity. It is highly challenging but desirable to develop efficient bifunctional catalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). A universal and facile method for the development of bifunctional electrocatalysts with outstanding electrocatalytic activity for both the ORR and OER in alkaline medium is reported. A mixture of Pt/C catalyst with superior ORR activity and a perovskite oxide based catalyst with outstanding OER activity was employed in appropriate ratios, and prepared by simple ultrasonic mixing. Nanosized platinum particles with a wide range of platinum to oxide mass ratios was realized easily in this way. The as‐formed Pt/C–oxide composites showed better ORR activity than a single Pt/C catalyst and better OER activity than a single oxide to bring about much improved bifunctionality (ΔE is only ≈0.8 V for Pt/C–BSCF; BSCF=Ba0.5Sr0.5Co0.8Fe0.2O3?δ), due to the synergistic effect. The electronic transfer mechanism and the rate‐determining step and spillover mechanism were two possible origins of such a synergistic effect. Additionally, the phenomenon was found to be universal, although the best performance could be reached at different platinum to oxide mass ratios for different oxide catalysts. This work thus provides an innovative strategy for the development of new bifunctional electrocatalysts with wide application potentials in high‐energy and efficient electrochemical energy storage and conversion.  相似文献   

5.
Zeolites are widely used in many commercial processes, mostly as catalysts or adsorbents. Understanding their intimate structure at the nanoscale is the key to control their properties and design the best materials for their ever increasing uses. Herein, we report a new and controllable fluoride treatment for the non‐discriminate extraction of zeolite framework cations. This sheds new light on the sub‐structure of commercially relevant zeolite crystals: they are segmented along defect zones exposing numerous nanometer‐sized crystalline domains, separated by low‐angle boundaries, in what were apparent single‐crystals. The concentration, morphology, and distribution of such domains analyzed by electron tomography indicate that this is a common phenomenon in zeolites, independent of their structure and chemical composition. This is a milestone to better understand their growth mechanism and rationally design superior catalysts and adsorbents.  相似文献   

6.
A series of binder‐free ZSM‐5 catalysts and a binder‐containing catalyst were prepared and characterized with X‐ray diffraction (XRD), X‐ray fluorescence (XRF), 27Al magic‐angle spinning (MAS) nuclear magnetic resonance (NMR), N2 sorption and ammonia temperature‐programmed deposition (TPD) methods. The catalytic activity and selectivity in the dehydration of crude methanol to dimethyl ether (DME) were evaluated in a fixed‐bed reactor for the catalysts. The outstanding structural characters such as high zeolite contents, sufficiently open channels and richness in mesopores have been proved on these binder‐free catalysts. The influence of the solid‐acidity, which is closely related to the framework silica alumina ratio (SAR) of the catalysts, on the catalytic properties has been discussed. A binder‐free catalyst with a better potential in application has been selected for its high activity and selectivity, long life‐time and non‐sensitivity to water contents in the feed. The reason for its excellent performance of the catalyst was discussed.  相似文献   

7.
A time‐resolved in situ micro‐spectroscopic approach has been used to investigate the Brønsted acidic properties of fluid‐catalytic‐cracking (FCC) catalysts at the single particle level by applying the acid‐catalysed styrene oligomerisation probe reaction. The reactivity of individual FCC components (zeolite, clay, alumina and silica) was monitored by UV/Vis micro‐spectroscopy and showed that only clay and zeolites (Y and ZSM‐5) contain Brønsted acid sites that are strong enough to catalyse the conversion of 4‐fluorostyrene into carbocationic species. By applying the same approach to complete FCC catalyst particles, it has been found that the fingerprint of the zeolitic UV/Vis spectra is clearly recognisable. This almost exclusive zeolitic activity is confirmed by the fact that hardly any reactivity is observed for FCC particles that contain no zeolite. Confocal fluorescence microscopy images of FCC catalyst particles reveal inhomogeneously distributed micron‐sized zeolite domains with a highly fluorescent signal upon reaction. By examining laboratory deactivated FCC catalyst particles in a statistical approach, a clear trend of decreasing fluorescence intensity, and thus Brønsted acidity, of the zeolite domains is observed with increasing severity of the deactivation method. By comparing the average fluorescence intensities obtained with two styrenes that differ in reactivity, it has been found that the Brønsted acid site strength within FCC catalyst particles containing ZSM‐5 is more uniform than within those containing zeolite Y, as confirmed with temperature‐programmed desorption of ammonia.  相似文献   

8.
The acidity and initial and time-on-stream activity in propane aromatization (at 550°C, space velocity of 3100 cm3g−1 (zeolite)h−1) of Ga-impregnated H-ZSM-5 zeolite without or with binders (50 wt%), such as silica, alumina and kaolin, have been investigated. Both the acidity and catalytic activity of the zeolite are influenced by the presence of binder in the catalyst, depending upon the binder. The influence is found to be lowest for alumina and highest for kaolin. Among the binders, alumina is the most preferred binder for the zeolite catalyst.  相似文献   

9.
《中国化学会会志》2017,64(12):1503-1509
The most common electrocatalysts for the oxygen reduction reaction (ORR) are platinum‐based ones. This work demonstrates the performance of iron‐containing metal organic frameworks (MOFs) as non‐platinum‐based nano‐electrocatalysts for ORR in an alkaline medium. As a new non‐platinum catalyst to achieve the active sites for the ORR, Mil‐100 (Fe) nanoparticles were used in aqueous KOH by the rotating‐disk electrode method. The main objectives of this study are the investigations on the electron transfer number (n ), Tafel slope, and catalytic performance. The particles size of the obtained powders is in the nanoscale range (approximately 25 nm). The electron transfer number for the ORR on the surface of iron‐containing catalyst is approximately 4, and the Tafel slope of diffusion‐corrected kinetic current density is ~50.7 mV per decade at low overpotential. This work might extend a new non‐precious‐metal catalyst structure for ORR for use in low‐temperature fuel cells.  相似文献   

10.
Bimetallic nanoparticle encapsulation in microporous zeolite crystals is a promising route for producing catalysts with unprecedented reaction selectivities. Herein, a novel synthetic approach was developed to produce PtZnx nanoclusters encapsulated inside zeolite micropores by introducing Pt2+ cations into a zincosilicate framework via ion exchange, and subsequent controlled demetallation and alloying with framework Zn. The resulting zeolites featured nanoclusters with sizes of approximately 1 nm, having an interatomic structure corresponding to a PtZnx alloy as confirmed by pair distribution function (PDF) analysis. These materials featured simultaneous shape and substrate specificity demonstrated by the selective production of p‐chloroaniline from the competitive hydrogenation of p‐chloronitrobenzene and 1,3‐dimethyl‐5‐nitrobenzene.  相似文献   

11.
The conversion of light alkanes to high value aromatics proceeds with a high selectivity over bifunctional, gallium (Ga) containing zeolite catalysts. It is generally agreed that Ga sites are involved in dehydrogenation reaction steps and that the zeolite acid sites catalyze cracking, oligomerization, and cyclization reactions. However, understanding of the precise roles of the acid and Ga sites in the reaction mechanisms is significantly hampered since the number of these sites in working catalysts is not known. This paper describes a kinetic approach to evaluation of the acid and Ga active sites in working Ga containing TON zeolite catalysts that relies on the analysis of the rates of formation of the primary products of a n-butane aromatization reaction. Our results show that the rate of ethane formation at low n-butane conversions can be used as a quantitative estimate of acidity in working bifunctional zeolite catalysts and demonstrate, for the first time, a significant decrease in the number of Br?nsted acid sites in the Ga containing catalysts under reaction conditions: around 47 and 79% for the catalysts with Ga loading of 1.5 and 2.5 wt %, respectively. We conclude that the reduction in acidity is associated with the formation of catalytically active Ga(+) ions and obtain estimates for the number and steady-state turnover activity of the acid and Ga active sites in n-butane transformation. We anticipate that our work will facilitate understanding of the precise roles of the acid and Ga sites in the mechanisms of alkane aromatization and, as a far-reaching implication, will prompt wider use of detailed kinetic studies for the evaluation of active sites in working catalysts.  相似文献   

12.
The macroscopic distribution of platinum in extrudates of bifunctional PtHFAU/Al2O3 catalysts is shown to have a significant effect on their activity, stability and selectivity in n-hexane transformation under hydrogen pressure. The best catalysts are those for which platinum is homogeneously dispersed. n-Hexane transformation is proposed as a model reaction for estimating the macroscopic distribution of platinum in industrial catalyst pellets.  相似文献   

13.
Improved synthetic approaches for preparing small‐sized Ni nanoparticles (d=3 nm) supported on HBEA zeolite have been explored and compared with the traditional impregnation method. The formation of surface nickel silicate/aluminate involved in the two precipitation processes are inferred to lead to the stronger interaction between the metal and the support. The lower Brønsted acid concentrations of these two Ni/HBEA catalysts compared with the parent zeolite caused by the partial exchange of Brønsted acid sites by Ni2+ cations do not influence the hydrodeoxygenation rates, but alter the product selectivity. Higher initial rates and higher stability have been achieved with these optimized catalysts for the hydrodeoxygenation of stearic acid and microalgae oil. Small metal particles facilitate high initial catalytic activity in the fresh sample and size uniformity ensures high catalyst stability.  相似文献   

14.
The growth of nanoscale crystals of zeolite Y from colloidal aluminosilicate gel particles has been investigated with high-resolution electron microscopy. Each amorphous gel particle nucleates only a single zeolite crystal, with nucleation beginning at the gel-solution interface (see scheme). Further growth of these nanocrystals is possible through the solution-mediated transport of framework building blocks.  相似文献   

15.
The article proposes a new way for visualization of mesopores and quantitative evaluation of the pore structure in zeolite crystals. The approach is based on platinum tracking inside the zeolite material after its incorporation from a gaseous precursor using an electron beam prior to preparing a TEM specimen by the focused ion beam technique. The pores in mesoporous silica and purely microporous zeolite Y were visualized in TEM images in a demonstration of the capabilities of the approach. Finally, platinum tracking was used for studying the pore structure of zeolite Y (CBV 720) containing mesopores both inside the crystal and those emerging at its surface, which were unambiguously distinguished from each other. The obtained sizes of the mesopores and the calculated material porosity are in good agreement with the results obtained by the low-temperature argon sorption isotherms method.  相似文献   

16.
The cerium density and valence in micrometer‐size platinum‐supported cerium–zirconium oxide Pt/Ce2Zr2Ox (x=7–8) three‐way catalyst particles were successfully mapped by hard X‐ray spectro‐ptychography (ptychographic‐X‐ray absorption fine structure, XAFS). The analysis of correlation between the Ce density and valence in ptychographic‐XAFS images suggested the existence of several oxidation behaviors in the oxygen storage process in the Ce2Zr2Ox particles. Ptychographic‐XAFS will open up the nanoscale chemical imaging and structural analysis of heterogeneous catalysts.  相似文献   

17.
Dual‐mesoporous ZSM‐5 zeolite with highly b axis oriented large mesopores was synthesized by using nonionic copolymer F127 and cationic surfactant CTAB as co‐templates. The product contains two types of mesopores—smaller wormlike ones of 3.3 nm in size and highly oriented larger ones of 30–50 nm in diameter along the b axis—and both of them interpenetrate throughout the zeolite crystals and interconnect with zeolite microporosity. The dual‐mesoporous zeolite exhibits excellent catalytic performance in the condensation of benzaldehyde with ethanol and greater than 99 % selectivity for benzoin ethyl ether at room temperature, which can be ascribed to the zeolite lattice structure offering catalytically active sites and the hierarchical and oriented mesoporous structure providing fast access of reactants to these sites in the catalytic reaction. The excellent recyclability and high catalytic stability of the catalyst suggest prospective applications of such unique mesoporous zeolites in the chemical industry.  相似文献   

18.
Surface modification of mesoporous SBA‐15 silica generated a hydrophobic environment for a molybdenum diamine (Mo‐diamine) precursor solution, enabling direct growth of isolated 1.9±0.4 nm α‐MoC1?x nanoparticles (NPs) inside the pores of the support. The resulting NP catalysts are bifunctional, and compared to bulk α‐MoC1?x and β‐Mo2C, the NPs exhibit a greater acid‐site:H‐site ratio and a fraction of stronger acid sites. The greater acid‐site:H‐site ratio results in higher decarbonylation (DCO) selectivity during acetic acid hydrodeoxygenation (HDO) reactions, and the stronger acid sites lead to higher activity and ketonization (KET) selectivity at high temperatures. The hard‐templating synthetic method could be a versatile route toward carbide NPs of varying size, composition, and phase, on a range of mesoporous oxide supports.  相似文献   

19.
This paper presents a study of MFI-type zeolite crystal growth during hydrothermal synthesis of nanocomposite MFI-alumina membranes by the pore-plugging method, using the standard protocol described in a previous study [S. Miachon, E. Landrivon, M. Aouine, Y. Sun, I. Kumakiri, Y. Li, O. Pachtová Prokopová, N. Guilhaume, A. Giroir-Fendler, H. Mozzanega, J.-A. Dalmon, Nanocomposite MFI-alumina membranes via pore-plugging synthesis: specific transport and separation properties, J. Membr. Sci. 281 (2006) 228]. To this aim, the materials have been characterized by SEM, EDX, pure H2 gas permeance and n-butane/H2 mixture separation at different stages of the synthesis. The effect of synthesis time in the range of 4–89 h and the effect of a 9-h interruption after a 8-h hydrothermal synthesis have been surveyed, as well as the mean pore size and the alumina phase of the support inner layer. Our results suggest that an interruption during the synthesis is necessary to allow the zeolite precursor to diffuse into the support pores. This diffusion leads to a further growth of zeolite crystals into the support matrix without formation of a continuous zeolite film on top of the support, as is usually reported in the literature. The zeolite crystals are fully embedded into the support top layer after at least 53-h synthesis time, leading to high quality membranes in only one synthesis run. The nanocomposite MFI-alumina architecture at the nanoscale has important consequences in improving the gas separation performance of this kind of materials when compared to more conventional film-like structures. A method based on gas transport measurements has been used to determine the effective thickness of the separating material.  相似文献   

20.
Zeolites with uniform micropores are important shape-selective catalysts. However, the external acid sites of zeolites have a negative impact on shape-selective catalysis, and the microporosity may lead to serious diffusion limitation. Herein, we report on the direct synthesis of hierarchical hollow STW-type zeolite single crystals with a siliceous exterior. In an alkalinous fluoride medium, the nucleation of highly siliceous STW zeolites takes place first, and the nanocrystals are preferentially aligned on the outer surface of the gel agglomerates to grow into single crystalline shells upon crystallization. The lagged crystallization of the internal Al-rich amorphous gels onto the inner surface of nanocrystalline zeolite shells leads to the formation of hollow cavities in the core of the zeolite crystals. The hollow zeolite single crystals possess a low-to-high aluminum gradient from the surface to the core, resulting in an intrinsic inert external surface, and exhibit superior catalytic performance in toluene methylation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号