首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The origin of the positive temperature effect in fluorescence emission of a newly designed perylene bisimide (PBI) derivative with two naphthyl units containing ortho-methoxy group (NM) at its bay positions (PBI-2NM) was elucidated. A key point is the finding of a weak hydrogen bond (<5.0 kcal mol−1) between the methoxy group of the NM unit and a nearby hydrogen atom of the PBI core. It is the bonding that drives co-planarization of the different aromatic units, resulting in delocalization of the π-electrons of the compound as synthesized, inducing fluorescence quenching via intramolecular charge transfer (ICT). With increasing temperature, the co-planar structure could be distorted in part, resulting in a decreased degree of ICT, and hence leading to enhanced fluorescence emission. The unique positive temperature effect in emission induced by H-bond-driven co-planarization may pave a new avenue in designing functional molecular systems complementary to conventional methods.  相似文献   

2.
Red‐emissive fluorophores generally consist of large π‐extended systems and thus encounter the problem of serious fluorescence quenching in the solid state. A series of structurally simple compounds 2,5‐bis(alkylamino)terephthalates 1 a – c are reported that consist of a very small π‐system (only a single benzene) but display efficient red emission in crystals. Crystal 1 a having a molecular weight of only 252 g mol−1 shows red emission with the maximum of 620 nm and a fluorescence quantum yield of 0.40. The unique emission property of crystal 1 a is mainly because of the planarization of skeleton dominated by the strong intramolecular hydrogen bonds and the packing structure with negligible π–π interactions contributed by the mini π‐system. Moreover, besides efficient red emission, high crystallinity with co‐planar facets endows crystal 1 a with significant amplified spontaneous emission.  相似文献   

3.
The sensing mechanism of a fluoride‐anion probe BODIPY‐amidothiourea ( 1c ) has been elucidated through the density functional theory (DFT) and time‐dependent density functional theory (TDDFT) calculations. The theoretical study indicates that in the DMSO/water mixtures the fluorescent sensing has been regulated by the fluoride complex that formed between the probe 1c /two water molecules and the fluoride anion, and the excited‐state intermolecular hydrogen bond (H‐B) plays an important role in the fluoride sensing mechanism. In the first excited state, the H‐Bs of the fluoride complex 1cFH2 are overall strengthened, which induces the weak fluorescence emission. In addition, molecular orbital analysis demonstrates that 1cFH2 has more obvious intramolecular charge transfer (ICT) character in the S1 state than 1cH2 formed between the probe 1c and two water molecules, which also gives reason to the weaker fluorescence intensity of 1cFH2 . Further, our calculated UV‐vis absorbance and fluorescence spectra are in accordance with the experimental measurements. © 2018 Wiley Periodicals, Inc.  相似文献   

4.
A full account of our studies of 2,4,6‐trinitrophenol (TNP) sensing is provided. A series of chemosensors 2 , 3 , 4 , 5 with a variety of aromatic chromophores for specific recognition of TNP has been designed and then realized through the fluorescence “on/off” mechanism. These chemosensors demonstrated highly selective, sensitive, and fluorescent quenching of TNP with remarkable visual changes through the intramolecular charge‐transfer (ICT) process. Their host–guest interactions were investigated by 1H NMR spectroscopic titrations and their corresponding co‐crystal structures, which showed that the 1:1 host–guest complexes were formed by multiple hydrogen‐bond interactions in solution or in the solid state. The origins of the significant affinity demonstrated during the fluorescence recognition process were further disclosed through DFT calculations of corresponding compounds.  相似文献   

5.
Herein, two compounds ( 1 a and 1 b ) were rationally constructed as novel reaction‐based fluorescent probes for CN? by making use of the electron‐withdrawing ability of the cyano group that was formed from the sensing reaction. Notably, this design strategy was first employed for the development of fluorescent CN? probes. The experimental details showed that probe 1 a exhibited a fluorescence turn‐on response to CN?, whereas other anions, biological thiols, and hydrogen sulfide gave almost no interference. The detection limit of probe 1 a for CN? was found to be 0.12 μM . The sensing reaction product of 1 a with CN? was characterized by NMR spectroscopy and mass spectrometry. TD‐DFT calculations demonstrated that the formed cyano group drives the intramolecular charge transfer (ICT) process from coumarin dye to the cyano group and thus the original strong ICT from the coumarin dye to the 3‐position pyridyl vinyl ketone substituent is weakened, which results in recovery of coumarin fluorescence. The practical utility of 1 a was also examined. By fabricating paper strips, probe 1 a can be used as a simple tool to detect CN? in field measurements. Moreover, probe 1 a has been successfully applied for quantitative detection of endogenous CN? from cassava root.  相似文献   

6.
刘力宏  张晗  张煊  江云宝 《中国化学》2005,23(4):421-426
Two dual fluorescent receptors (1 and 2) for monosaccharides based on 4-dialky(alkyl=methyl and n-butyl) containing boronic acid group at the amido aniline were synthesized and their spectral properties were investigated. These receptors exhibited dual fluorescence with the long-wavelength band displaying strong solvent-polarity dependence, indicating the occurrence of the excited-state intramolecular charge transfer (ICT).With increasing pH value in aqueous solutions, the hybridization of the boron atom changed from sp^2 to sp^3, inducing a decrease in the total fluorescence quantum yield. The experimental results indicated that the anionic form of the boronate group acted as an electron donor and the benzanilide-like charge transfer was promoted upon hybridization change. In the presence of monosaccharides, the boronic acid in 1 and 2 changed from neutral to anionic form. The intensity of the locally excited (LE) state emission decreased in the presence of sugars while a slight increase in the intensity at the charge transfer (CT) emission occurred. Based on the change in the CT to LE intensity ratios of 1 and 2 due to sugar binding, ratiometric fluorescent assays for monosaccharide sensing were established.  相似文献   

7.
Three new organic semiconductors, in which either two methoxy units are directly linked to a dibenzotetrathiafulvalene (DB‐TTF) central core and a 2,1,3‐chalcogendiazole is fused on the one side, or four methoxy groups are linked to the DB‐TTF, have been synthesised as active materials for organic field‐effect transistors (OFETs). Their electrochemical behaviour, electronic absorption and fluorescence emission as well as photoinduced intramolecular charge transfer were studied. The electron‐withdrawing 2,1,3‐chalcogendiazole unit significantly affects the electronic properties of these semiconductors, lowering both the HOMO and LUMO energy levels and hence increasing the stability of the semiconducting material. The solution‐processed single‐crystal transistors exhibit high performance with a hole mobility up to 0.04 cm2 V?1 s?1 as well as good ambient stability.  相似文献   

8.
In the present work, a unique series of random polybenzimidazole (PBI) copolymers consisting of the recently reported novel isomeric AB‐PBI (i‐AB‐PBI) and the well known AB‐PBI were synthesized. The i‐AB‐PBI incorporates additional linkages (2,2 and 5,5) in the benzimidazole sequence when compared with AB‐PBI. Random copolymers, varying in composition at 10 mol % increments, were synthesized to evaluate the effects of sequence isomerism in the polymer main chain without altering the fundamental chemical composition or functionality of a polymer chain consisting of 2,5‐benzimidazole units. Polymer solutions were prepared in polyphosphoric acid (PPA) and cast into membranes using the sol–gel PPA process. The resulting polymers were found to have high inherent viscosities (>2.0 dL/g) and showed elevated membrane proton conductivities (~0.2 S/cm) under anhydrous conditions at 180 °C. Fuel cell performance evaluations were conducted, and an average output voltage ranging from 0.5 to 0.60 V at 0.2 A/cm2 was observed for hydrogen/air at an operational temperature of 180 °C without applied backpressure or humidification. Herein, we report for the first time glass transition (Tg) temperatures for AB‐PBI, i‐AB‐PBI, and an anomalous Tg effect for the series of randomized PBIs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 619–628  相似文献   

9.
To clarify the individual effect of secondary forces on the self‐assembly of molecules, a chiral cholesteryl N‐(2‐anthryl) carbamate (CAC) consisting of anthryl, carbamate, and cholesteryl groups was synthesized. From the results of the temperature‐dependent 1H NMR, the hydrogen bond‐assisted π–π interaction was found to maintain the growth of the axis of the self‐assembled structure, and the three‐dimensional effect from the cholesteryl group induces the rotational structure. Fluorescence behavior of the CAC molecules with and without assistance of secondary forces was investigated. Thermoswitchable fluorescence of gelators was observed. Supramolecular organogels reveal significant enhanced fluorescence strength due to the aggregation‐induced enhanced emission of the CAC molecules. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

10.
The emission process of the o ‐carborane dyad with anthracene originating from the twisted intramolecular charge transfer (TICT) state in the crystalline state is described. The anthracene‐o ‐carborane dyad was synthesized and its optical properties were investigated. Initially, the dyad had aggregation‐ and crystallization‐induced emission enhancement (AIEE and CIEE) properties via the intramolecular charge transfer (ICT) state. Interestingly, the dyad presented the dual‐emissions assigned to both locally excited (LE) and ICT states in solution. From the mechanistic studies and computer calculations, it was indicated that the emission band from the ICT should be attributable to the TICT emission. Surprisingly, even in the crystalline state, the TICT emission was observed. It was proposed from that the compact sphere shape of o ‐carborane would allow for rotation even in the condensed state.  相似文献   

11.
A photocatalytic system containing a perylene bisimide (PBI) dye as a photosensitizer anchored to titanium dioxide (TiO2) nanoparticles through carboxyl groups was constructed. Under solar‐light irradiation in the presence of sacrificial triethanolamine (TEOA) in neutral and basic conditions (pH 8.5), a reaction cascade is initiated in which the PBI molecule first absorbs green light, giving the formation of a stable radical anion (PBI.?), which in a second step absorbs near‐infrared light, forming a stable PBI dianion (PBI2?). Finally, the dianion absorbs red light and injects an electron into the TiO2 nanoparticle that is coated with platinum co‐catalyst for hydrogen evolution. The hydrogen evolution rates (HERs) are as high as 1216 and 1022 μmol h?1 g?1 with simulated sunlight irradiation in neutral and basic conditions, respectively.  相似文献   

12.
Herein we report on the synthesis and acid‐responsive emission properties of donor–acceptor (D–A) molecules that contain a thienothiophene unit. 2‐Arylthieno[3,2‐b]thiophenes were conjugated with an N‐methylbenzimidazole unit to form acid‐responsive D–A‐type fluorophores. The D–A‐conjugated fluorophores showed intense intramolecular charge‐transfer (ICT) emission in response to acid. The effect of the substitution on their photophysical properties as well as their solvent‐dependence indicated non‐twisting ICT emission in protonated D–A molecules. The quinoidal character of 2‐arylthienothiophene as a donor part is discussed, as it is assumed that it contributes to suppression of the molecular twisting in the excited state, therefore decreasing the nonradiative rate constant, thereby resulting in the intense ICT emission. Acid–base‐sensitive triple‐color emission was also achieved by the introduction of a base‐responsive phenol group in the donor part.  相似文献   

13.
Novel alternating copolymers comprising bis‐ calix[4]arene‐p‐phenylene ethynylene and m‐phenylene ethynylene units ( CALIX‐m‐PPE ) were synthesized using the Sonogashira‐Hagihara cross‐coupling polymerization. Good isolated yields (60–80%) were achieved for the polymers that show Mn ranging from 1.4 × 104 to 5.1 × 104 gmol?1 (gel permeation chromatography analysis), depending on specific polymerization conditions. The structural analysis of CALIX‐m‐PPE was performed by 1H, 13C, 13C–1H heteronuclear single quantum correlation (HSQC), 13C–1H heteronuclear multiple bond correlation (HMBC), correlation spectroscopy (COSY), and nuclear overhauser effect spectroscopy (NOESY) in addition to Fourier transform‐Infrared spectroscopy and microanalysis allowing its full characterization. Depending on the reaction setup, variable amounts (16–45%) of diyne units were found in polymers although their photophysical properties are essentially the same. It is demonstrated that CALIX‐m‐PPE does not form ground‐ or excited‐state interchain interactions owing to the highly crowded environment of the main‐chain imparted by both calix[4]arene side units which behave as insulators inhibiting main‐chain π–π staking. It was also found that the luminescent properties of CALIX‐m‐PPE are markedly different from those of an all‐p‐linked phenylene ethynylene copolymer ( CALIX‐p‐PPE ) previously reported. The unexpected appearance of a low‐energy emission band at 426 nm, in addition to the locally excited‐state emission (365 nm), together with a quite low fluorescence quantum yield (? = 0.02) and a double‐exponential decay dynamics led to the formulation of an intramolecular exciplex as the new emissive species. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
Co‐crystallisation of, in particular, 4‐iodotetrafluorophenol with a series of secondary and tertiary cyclic amines results in deprotonation of the phenol and formation of the corresponding ammonium phenate. Careful examination of the X‐ray single‐crystal structures shows that the phenate anion develops a C?O double bond and that the C?C bond lengths in the ring suggest a Meissenheimer‐like delocalisation. This delocalisation is supported by the geometry of the phenate anion optimised at the MP2(Full) level of theory within the aug‐cc‐pVDZ basis (aug‐cc‐pVDZ‐PP on I) and by natural bond orbital (NBO) analyses. With sp2 hybridisation at the phenate oxygen atom, there is strong preference for the formation of two non‐covalent interactions with the oxygen sp2 lone pairs and, in the case of secondary amines, this occurs through hydrogen bonding to the ammonium hydrogen atoms. However, where tertiary amines are concerned, there are insufficient hydrogen atoms available and so an electrophilic iodine atom from a neighbouring 4‐iodotetrafluorophenate group forms an I???O halogen bond to give the second interaction. However, in some co‐crystals with secondary amines, it is also found that in addition to the two hydrogen bonds forming with the phenate oxygen sp2 lone pairs, there is an additional intermolecular I???O halogen bond in which the electrophilic iodine atom interacts with the C?O π‐system. All attempts to reproduce this behaviour with 4‐bromotetrafluorophenol were unsuccessful. These structural motifs are significant as they reproduce extremely well, in low‐molar‐mass synthetic systems, motifs found by Ho and co‐workers when examining halogen‐bonding interactions in biological systems. The analogy is cemented through the structures of co‐crystals of 1,4‐diiodotetrafluorobenzene with acetamide and with N‐methylbenzamide, which, as designed models, demonstrate the orthogonality of hydrogen and halogen bonding proposed in Ho’s biological study.  相似文献   

15.
The synthesis, self‐assembly, and gelation ability of a series of organogelators based on perylene bisimide (PBI) dyes containing amide groups at imide positions are reported. The synergetic effect of intermolecular hydrogen bonding among the amide functionalities and π–π stacking between the PBI units directs the formation of the self‐assembled structure in solution, which beyond a certain concentration results in gelation. Effects of different peripheral alkyl substituents on the self‐assembly were studied by solvent‐ and temperature‐dependent UV‐visible and circular dichroism (CD) spectroscopy. PBI derivatives containing linear alkyl side chains in the periphery formed H‐type π stacks and red gels, whereas by introducing branched alkyl chains the formation of J‐type π stacks and green gels could be achieved. Sterically demanding substituents, in particular, the 2‐ethylhexyl group completely suppressed the π stacking. Coaggregation studies with H‐ and J‐aggregating chromophores revealed the formation of solely H‐type π stacks containing both precursor molecules at a lower mole fraction of J‐aggregating chromophore. Beyond a critical composition of the two chromophores, mixed H‐aggregate and J‐aggregate were formed simultaneously, which points to a self‐sorting process. The versatility of the gelators is strongly dependent on the length and nature of the peripheral alkyl substituents. CD spectroscopic studies revealed a preferential helicity of the aggregates of PBI building blocks bearing chiral side chains. Even for achiral PBI derivatives, the utilization of chiral solvents such as (R)‐ or (S)‐limonene was effective in preferential population of one‐handed helical fibers. AFM studies revealed the formation of helical fibers from all the present PBI gelators, irrespective of the presence of chiral or achiral side chains. Furthermore, vortex flow was found to be effective in macroscopic orientation of the aggregates as evidenced from the origin of CD signals from aggregates of achiral PBI molecules.  相似文献   

16.
Donor–acceptor systems based on subporphyrins with nitro and amino substituents at meta and para positions of the meso‐phenyl groups were synthesized and their photophysical properties have been systematically investigated. These molecules show two types of charge‐transfer interactions, that is, from center to periphery and periphery to center depending on the peripheral substitution, in which the subporphyrin moiety plays a dual role as both donor and acceptor. Based on the solvent‐polarity‐dependent photophysical properties, we have shown that the fluorescence emission of para isomers originates from the solvatochromic, dipolar, symmetry‐broken, and relaxed excited states, whereas the non‐solvatochromic fluorescence of meta isomers is of the octupolar type with false symmetry breaking. The restricted meso‐(4‐aminophenyl) rotation at low temperature prevents the intramolecular charge‐transfer (ICT)‐forming process. The two‐photon absorption (TPA) cross‐section values were determined by photoexcitation at 800 nm in nonpolar toluene and polar acetonitrile solvents to see the effect of ICT on the TPA processes. The large enhancement in the TPA cross‐section value of approximately 3200 GM (1 GM=10?50 cm4 s photon?1) with donor–acceptor substitution has been attributed to the octupolar effect and ICT interactions. A correlation was found between the electron‐donating/‐withdrawing abilities of the peripheral groups and the TPA cross‐section values, that is, p‐aminophenyl>m‐aminophenyl>nitrophenyl. The increased stability of octupolar ICT interactions in highly polar solvents enhances the TPA cross‐section value by a factor of approximately 2 and 4, respectively, for p‐amino‐ and m‐nitrophenyl‐substituted subporphyrins. On the other hand, the stabilization of the symmetry‐broken, dipolar ICT state gives rise to a negligible impact on the TPA processes.  相似文献   

17.
We synthesized a series of donor‐substituted tridurylboranes containing different types and number of chromophores including 1‐pyrene (PB1–3), 3‐carbazole (CBC1–3), or substituted p‐carbazol‐N‐phenyl (CBN3a–c) as various donor–acceptor (D–A) molecules. The photophysical and electrochemical properties of these twisted D–A molecules were investigated by means of UV/Vis absorption and fluorescence spectroscopy as well as cyclic voltammetry (CV). Solvent polarity, viscosity, and temperature effects on the fluorescence emission reveal the existence of three types of excited states, and their equilibria and interconversions between three excited states. In increasing order of the charge‐separated extent and the conformational change, three excited states are the locally excited (LE) state, the more planar intramolecular charge‐transfer (ICT) state, and the more twisted ICT (TICT) state as compared to the ground state. The TICT state undergoes a conformational change with a higher energy barrier over the ICT state. The solvent polarity effect on the state conversion is opposite to the viscosity effect, and temperature effects derive from its resulting changes of polarity and viscosity. For example, the increase of the polarity of the solvent results in excited‐state conversions from the LE state to the ICT state, and/or from the ICT to the TICT state, and an increased viscosity leads to the opposite conversions. On the basis of electrochemical and spectral data, thermodynamics of a possible ICT process were estimated, and correlated with the excited‐state character. Finally, three excited states have been characterized by the conformation, the photophysical properties, and the thermodynamics of the ICT processes.  相似文献   

18.
Two fluorine‐substituted 1,4,5,6‐tetrahydrobenzo[h]quinazolin‐2‐amine (BQA) derivatives, namely 2‐amino‐4‐(2‐fluorophenyl)‐9‐methoxy‐1,4,5,6‐tetrahydrobenzo[h]quinazolin‐3‐ium chloride, ( 8 ), and 2‐amino‐4‐(4‐fluorophenyl)‐9‐methoxy‐1,4,5,6‐tetrahydrobenzo[h]quinazolin‐3‐ium chloride, ( 9 ), both C19H19FN3O+·Cl?, were generated by Michael addition reactions between guanidine hydrochloride and the α,β‐unsaturated ketones (E)‐2‐(2‐fluorobenzylidene)‐7‐methoxy‐3,4‐dihydronaphthalen‐1(2H)‐one, C18H15FO2, ( 6 ), and (E)‐2‐(4‐fluorobenzylidene)‐7‐methoxy‐3,4‐dihydronaphthalen‐1(2H)‐one, ( 7 ). Because both sides of α,β‐unsaturated ketones ( 6 ) or ( 7 ) can be attacked by guanidine, we obtained a pair of isomers in ( 8 ) and ( 9 ). Single‐crystal X‐ray diffraction indicates that each isomer has a chiral C atom and both ( 8 ) and ( 9 ) crystallize in the achiral space group P21/c. The chloride ion, as a hydrogen‐bond acceptor, plays an important role in the formation of multiple hydrogen bonds. Thus, adjacent molecules are connected through intermolecular hydrogen bonds to generate a banded structure. Furthermore, these bands are linked into an interesting 3D network via hydrogen bonds and π–π interactions. Fortunately, the solubilities of ( 8 ) and ( 9 ) were distinctly improved and can exceed 50 mg ml?1 in water or PBS buffer system (pH 7.4) at room temperature. In addition, the results of an investigation of anti‐inflammatory activity show that ( 8 ) and ( 9 ), with o‐ and p‐fluoro substituents, respectively, display more potential for inhibitory effects on LPS‐induced NO secretion than starting ketones ( 6 ) and ( 7 ).  相似文献   

19.
The emission behavior of a new V‐shaped organic fluorescent compound (p,p′‐bis(2‐aryl‐1,3,4‐oxadiazol‐5‐yl)diphenyl sulfone ( OZA-SO ), consisting of diethylamino (donor) and sulfone (acceptor) units, has been studied in various polar solvents and with different morphologies. As expected, there is the gradual transition from the locally excited state to the intramolecular charge‐transfer (ICT) state with the increasing solvent polarity. The photoluminescence intensity of OZA-SO initially decreases with a low water fraction (fw), owing to ICT effect, and then increases with a high fw, owing to crystallization‐induced emission enhancement. At the same time, the fluorescence lifetime of OZA-SO increases from 0.062 ns in dimethylformamide (DMF) to 5.80 ns in a solution containing 90 % water, and then to 7.49 ns in a solution containing 60 % water. Furthermore, the solid‐state emission of OZA-SO can be tuned reversibly from green to yellow by fuming/grinding or fuming/heating owing to morphological changes. This color‐switchable feature of OZA-SO may have potential applications in optical‐recording and temperature‐sensing materials.  相似文献   

20.
Quantum-chemical calculations with the time-dependent density function theory (TDDFT) have been carried out for 5-phenyl-5H-phenanthridin-6-one (PP). For this molecule, dual fluorescence and in- tramolecular charge transfer (ICT) were experimentally observed. The B3LYP functional with 6-311 G (2d, p) basis set has been used for the theoretical calculations. The solvent effects have been described within the polarizable continuum model (PCM). Ground-state geometry optimization reveals that the phenyl/phenanthridinone dihedral angle equals 90.0°, a nearly perpendicular structure. Vertical ab- sorption energy calculations characterize the lower singlet excited states both in gas phase and in solvents. It can be found that the lower excited states have locally excitation (LE) feature. Through constructing the potential energy curves of both isolated and solvated systems describing the LE→ICT reaction and fluorescence emission, we obtain the enthalpy difference ΔH between the LE and ICT states, energy barrier Ea, and energy difference δEFC, indicating the structural changes taking place during the ICT reaction. Potential curve and calculated emission energies for both isolated and sol- vated systems show a dual fluorescence phenomenon, consisting of a LE emission band and a red-shifted ICT band. Our calculations including the solvent effects indicate that the dual fluorescence is brought about by the change in molecular structure connected with the planarization of the twisted N-phenylphenanthridinone during the ICT reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号