首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The structural and electronic consequences of π–π and C?H/π interactions in two alkoxy‐substituted 1,8‐bis‐ ((propyloxyphenyl)ethynyl)naphthalenes are explored by using X‐ray crystallography and electronic structure computations. The crystal structure of analogue 4 , bearing an alkoxy side chain in the 4‐position of each of the phenyl rings, adopts a π‐stacked geometry, whereas analogue 8 , bearing alkoxy groups at both the 2‐ and the 5‐positions of each ring, has a geometry in which the rings are splayed away from a π‐stacked arrangement. Symmetry‐adapted perturbation theory analysis was performed on the two analogues to evaluate the interactions between the phenylethynyl arms in each molecule in terms of electrostatic, steric, polarization, and London dispersion components. The computations support the expectation that the π‐stacked geometry of the alkoxyphenyl units in 4 is simply a consequence of maximizing π–π interactions. However, the splayed geometry of 8 results from a more subtle competition between different noncovalent interactions: this geometry provides a favorable anti‐alignment of C?O bond dipoles, and two C?H/π interactions in which hydrogen atoms of the alkyl side chains interact favorably with the π electrons of the other phenyl ring. These favorable interactions overcome competing π–π interactions to give rise to a geometry in which the phenylethynyl substituents are in an offset, unstacked arrangement.  相似文献   

4.
    
The stabilizing and destabilizing effects of alkyl groups on an aromatic stacking interaction were experimentally measured in solution. The size (Me, Et, iPr, and tBu) and position (meta and para) of the alkyl groups were varied in a molecular balance model system designed to measure the strength of an intramolecular aromatic interaction. Opposite stability trends were observed for alkyl substituents at different positions on the aromatic rings. At the closer meta‐position, smaller groups were stabilizing and larger groups were destabilizing. Conversely, at the farther para‐position, the larger alkyl groups were systematically more stabilizing with the bulky tBu group forming the strongest stabilizing interaction. X‐ray crystal structures showed that the stabilizing interactions of the small meta‐alkyl and large para‐alkyl groups were due to their similar distances and van der Waals contact areas with the edge of opposing aromatic ring.  相似文献   

5.
    
We present a comprehensive host-guest study of four substituted and unsubstituted [10]cycloparaphenylenes with the fullerenes C60 and C70. Within this study, the influence on the complexation behavior was investigated experimentally and computationally. Due to the increased steric demand the substitution on the nanohoop results in an energetic penalty, which could be partially compensated by additional substituent-fullerene interactions. These attractive interactions are intensified in the C70 complexes and with an increased degree of substitution. For the computational investigation conformer ensembles were taken into account, providing reliable structures with Boltzmann weighted energies. An analysis of the noncovalent interactions elucidated the origin of the enhanced substituent-C70 interaction. The ellipsoid fullerene C70 can be considered as a π-extended version of C60, which is able to increase the attractive van der Waals interactions within these supramolecular complexes.  相似文献   

6.
    
A collection of para-substituted propeller-shaped triphenylamine (TPA) derivatives have been computationally investigated for charge-transport characteristics exhibited by the derivatives by using the Marcus–Hush formalism. The various substituents chosen herein, with features that range from electron withdrawing to electron donating in nature, play a key role in defining the reorganisation energy and electronic coupling properties of the TPA derivatives. The TPA moiety is expected to possess weak electronic coupling on the basis of poor orbital overlap upon aggregation, owing to the restriction imposed by the propeller shape of the TPA core. However, the substituent groups attached to the TPA core can significantly dictate the crystal-packing motif of the TPA derivatives, wherein the variety of noncovalent intermolecular interactions subsequently generated drive the packing arrangement and influence electronic coupling between the neighbouring orbitals. Intermolecular interactions in the crystalline architecture of TPA derivatives were probed by using Hirshfeld and quantum theory of atoms-in-molecules techniques. Furthermore, symmetry-adapted perturbation theory analysis of the TPA analogues has revealed that a periodic arrangement of energetically stable dimers with significant electronic coupling is essential to contribute high charge-carrier mobility to the overall crystal.  相似文献   

7.
8.
9.
10.
    
The basicity of the simplest silicone, disiloxane (H3Si−O−SiH3), is strongly affected by the Si−O−Si angle (α). We use high-level ab initio MP2/aug′-cc-pVTZ calculations and the molecular electrostatic potential (MEP) to analyze the relationship between the increase in basicity and the reduction of α. Our results clearly point out that this increase can be explained through the MEP, as the interactions between oxygen from disiloxane and the acceptors are mostly electrostatic. Furthermore, the effect of α on the tetrel bond between disiloxane and several Lewis bases can again be rationalized using the MEP. Finally, we explore the cooperativity throughout α for ternary complexes where disiloxane simultaneously interacts with a Lewis acid and a Lewis base. Both non-covalent interactions remain cooperative for all α values, although the largest cooperativity effects are not always those maximizing the binding energy in the binary complexes. Overall, the MEP remains a powerful predictor for noncovalent interactions.  相似文献   

11.
Through the use of ab initio theoretical models based on MP2/aug‐cc‐pVDZ‐optimized geometries and CCSD(T)/aug‐cc‐pVTZ and CCSD(T)/aug‐c‐pVDZ total energies, it has been shown that the significant electron density rearrangements that follow the formation of a beryllium bond may lead to the appearance of a σ‐hole in systems that previously do not exhibit this feature, such as CH3OF, NO2F, NO3F, and other fluorine‐containing systems. The creation of the σ‐hole is another manifestation of the bond activation–reinforcement (BAR) rule. The appearance of a σ‐hole on the F atoms of CH3OF is due to the enhancement of the electronegativity of the O atom that participates in the beryllium bond. This atom recovers part of the charge transferred to Be by polarizing the valence density of the F into the bonding region. An analysis of the electron density shows that indeed this bond becomes reinforced, but the F atom becomes more electron deficient with the appearance of the σ‐hole. Importantly, similar effects are also observed even when the atom participating in the beryllium bond is not directly attached to the F atom, as in NO2F, NO3F, or NCF. Hence, whereas the isolated CH3OF, NO2F, and NO3F are unable to yield F ??? Base halogen bonds, their complexes with BeX2 derivatives are able to yield such bonds. Significant cooperative effects between the new halogen bond and the beryllium bond reinforce the strength of both noncovalent interactions.  相似文献   

12.
The controllable tuning of the excited states in a series of phosphine‐oxide hosts ( DPExPOCzn ) was realized through introducing carbazolyl and diphenylphosphine‐oxide (DPPO) moieties to adjust the frontier molecular orbitals, molecular rigidity, and the location of the triplet excited states by suppressing the intramolecular interplay of the combined multi‐insulating and meso linkage. On increasing the number of substituents, simultaneous lowering of the first singlet energy levels (S1) and raising of the first triplet energy levels (T1, about 3.0 eV) were achieved. The former change was mainly due to the contribution of the carbazolyl group to the HOMOs and the extended conjugation. The latter change was due to an enhanced molecular rigidity and the shift of the T1 states from the diphenylether group to the carbazolyl moieties. This kind of convergent modulation of excited states not only facilitates the exothermic energy transfer to the dopants in phosphorescent organic light‐emitting diodes (PHOLEDs), but also realizes the fine‐tuning of electrical properties to achieve the balanced carrier injection and transportation in the emitting layers. As the result, the favorable performance of blue‐light‐emitting PHOLEDs was demonstrated, including much‐lower driving voltages of 2.6 V for onset and 3.0 V at 100 cd m?2, as well as a remarkably improved E.Q.E. of 12.6 %.  相似文献   

13.
14.
15.
    
The regioselective lithiation of 1,2,3-triazoles provides an opportunity to introduce additional functionality, however this simple functionalisation strategy using triazoles bearing electron-withdrawing N-substituents has not been investigated until now. Herein, we demonstrate that the lithiated triazole intermediates can readily decompose, even at −78 °C. In addition, lithiation-deuteration studies reveal lithiation can take place competitively on both the triazole and the electron-withdrawn aryl ring. Careful control of reaction conditions is therefore required to i) minimise decomposition pathways; and ii) facilitate regioselective functionalisation of the triazole.  相似文献   

16.
    
Room-temperature phosphorescence (RTP) materials with high efficiency have attracted much attention because they have unique characteristics that cannot be realized in conventional fluorescent materials. Unfortunately, efficient RTP in metal-free organic materials is very rare and it has traditionally been considered as the feature to divide purely organic compounds from organometallic and inorganic compounds. There has been increasing research interest in the design and preparation of metal-free organic RTP materials in recent years. It has been reported that intermolecular interactions make a big difference to the photophysical behavior of organic molecules. In this regard, herein, the parameters that affect RTP efficiency are discussed, and a brief review of recent intermolecular halogen-/hydrogen-bonding strategies for efficient RTP in metal-free organic materials are provided. The opportunities and challenges are finally elaborated in the hope of guiding promising directions for the design and application of RTP materials.  相似文献   

17.
18.
19.
20.
We have designed and utilized a simple molecular recognition system to study the substituent effects in aromatic interactions. Recently, we showed that 3‐ and 3,5‐disubstituted benzoyl leucine diethyl amides with aromatic rings of varying electronic character organized into homochiral dimers in the solid state through a parallel displaced π–π interaction and two hydrogen bonds, but no such homochiral dimerization was observed for the unsubstituted case. This phenomenon supports the hypothesis that substituents stabilize π–π interactions regardless of their electronic character. To further investigate the origin of substituent effects for π–π interactions, we synthesized and crystallized a series of 4‐substituted benzoyl leucine diethyl amides. Surprisingly, only two of the 4‐substituted compounds formed homochiral dimers. A comparison among the 4‐substituted compounds that crystallized as homochiral dimers and their 3‐substituted counterparts revealed that there are differences in regard to the geometry of the aromatic rings with respect to each other, which depend on the electronic nature and location of the substituent. The crystal structures of the homochiral dimers that showed evidence of direct, local interactions between the substituents on the aromatic rings also displayed nonequivalent dihedral angles in the individual monomers. The crystallographic data suggests that such “flexing” may be the result of the individual molecules orienting themselves to maximize the local dipole interactions on the respective aromatic rings. The results presented here can potentially have broad applicability towards the development of molecular recognition systems that involve aromatic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号