首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An approach that combines limited proteolysis and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been developed to probe protease-accessible sites of ribosomal proteins from intact ribosomes. Escherichia coli and Thermus thermophilus 70S ribosomes were subjected to limited proteolysis using different proteases under strictly controlled conditions. Intact ribosomal proteins and large proteolytic peptides were recovered and directly analyzed by MALDI-MS, which allows for the determination of proteins that are resistant to proteolytic digestion by accurate measurement of molecular weights. Larger proteolytic peptides can be directly identified by the combination of measured mass, enzyme specificity, and protein database searching. Sucrose density gradient centrifugation revealed that the majority of the 70S ribosome dissociates into intact 30S and 50S subunits after 120 min of limited proteolysis. Thus, examination of ribosome populations within the first 30 to 60 min of incubation provides insight into 70S structural features. Results from E. coli and T. thermophilus revealed that a significantly larger fraction of 50S ribosomal proteins have similar limited proteolysis behavior than the 30S ribosomal proteins of these two organisms. The data obtained by this approach correlate with information available from the high-resolution crystal structures of both organisms. This new approach will be applicable to investigations of other large ribonucleoprotein complexes, is readily extendable to ribosomes from other organisms, and can facilitate additional structural studies on ribosome assembly intermediates.  相似文献   

3.
A variety of protein isolation and purification techniques for ribonucleoprotein (RNP) complexes were investigated for their compatibility with downstream analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Ribosomal proteins from Escherichia coli 70S ribosomes were obtained using methods such as phenol extraction and precipitation by organic solvents or acids. Under optimal conditions, more than 90% of the expected ribosomal proteins were detected in a single MALDI-MS experiment. The most effective approach combined ribosome denaturation by buffer exchange with acid precipitation of the ribosomal ribonucleic acids. An improved acid precipitation approach, involving the sequential additions of acetic and trifluoroacetic acid, yielded more complete protein coverage while minimizing loss of ion signal from lower molecular weight proteins. With phenol extraction, substantial gains in ion abundance of higher molecular weight proteins are noted, although some of the lower molecular weight proteins were not efficiently extracted. These results illustrate several effective approaches for protein isolation from protein complexes such as RNPs that are MALDI-MS compatible, and these approaches should extend the use of MALDI-MS for proteomics-based analyses of other protein-nucleic acid complexes.  相似文献   

4.
High‐resolution structures of ribosomes, the cellular machines that translate the genetic code into proteins, revealed the decoding mechanism, detected the mRNA path, identified the sites of the tRNA molecules in the ribosome, elucidated the position and the nature of the nascent proteins exit tunnel, illuminated the interactions of the ribosome with non‐ribosomal factors, such as the initiation, release and recycling factors. Notably, these structures proved that the ribosome is a ribozyme whose active site, namely where the peptide bonds are being formed, is situated within a universal symmetrical region that is embedded in the otherwise asymmetric ribosome structure. As this symmetrical region is highly conserved and provides the machinery required for peptide bond formation and for ribosome polymerase activity, it may be the remnant of the proto‐ribosome, a dimeric prebiotic machine that formed peptide bonds and non‐coded polypeptide chains. Structures of complexes of ribosomes with antibiotics targeting them revealed the principles allowing for their clinical use, identified resistance mechanisms and showed the structural bases for discriminating pathogenic bacteria from hosts, hence providing valuable structural information for antibiotics improvement and for the design of novel compounds that can serve as antibiotics.  相似文献   

5.
6.
In search of new anti‐tuberculars compatible with anti‐retroviral therapy we re‐identified amicetin as a lead compound. Amicetin's binding to the 70S ribosomal subunit of Thermus thermophilus (Tth) has been unambiguously determined by crystallography and reveals it to occupy the peptidyl transferase center P‐site of the ribosome. The amicetin binding site overlaps significantly with that of the well‐known protein synthesis inhibitor balsticidin S. Amicetin, however, is the first compound structurally characterized to bind to the P‐site with demonstrated selectivity for the inhibition of prokaryotic translation. The natural product‐ribosome structure enabled the synthesis of simplified analogues that retained both potency and selectivity for the inhibition of prokaryotic translation.  相似文献   

7.
Single particle electron cryomicroscopy is nowadays routinely used to generate three-dimensional structural information of ribosomal complexes without the need of crystallization. A large number of structures of functional important ribosomal complexes have thus been determined using this technique. In E. coli 70S ribosomes all three tRNA binding sites could be localized. The ternary complex of EF-TutRNAGTP that delivers the tRNA to the ribosome was directly visualized in a ribosomal complex blocked by the antibiotic kirromycin. Three different functional states of translocation have been studied and the respective EF-G binding sites have been mapped. The level of resolution achievable with electron cryomicroscopy allows conformational changes in the domain structures of elongation factors to be modelled in terms of rigid body movements. Structural information on eukaryotic ribosomes is also available for yeast and mammalian 80S ribosomes. The structural differences between rabbit 80S and E. coli 70S ribosomes could be interpreted in terms of ribosomal RNA expansion segments in the 18S and 23S RNA. The EF-G homologue EF2 was mapped analysing the structure of an 80SEF2sodarin complex and most recently the binding of a hepatitis C virus IRES element to a yeast 40S subunit has been studied. The first electron cryomicroscopical 3D reconstructions have further been used to overcome the initial phasing problems in X-ray crystallographic studies of the ribosome facilitating structure determination of the recent atomic resolution structures of the 30S and 50S ribosomal subunits. In turn, the knowledge of the atomic structure of the ribosome makes detailed interpretations of cryo-EM maps possible at approximately 20 A resolution.  相似文献   

8.
The ribosome is a very large complex that consists of many RNA and protein molecules and plays a central role in protein biosynthesis in all organisms. Extensive interactions between different molecules are critical to ribosomal functional dynamics. In this work, intermolecular interactions in the Escherichia coli 70S ribosome are investigated by coarse-grained (CG) analysis. CG models are defined to preserve dynamic domains in RNAs and proteins and to capture functional motions in the ribosome, and then the CG sites are connected by harmonic springs, and spring constants are obtained by matching the computed fluctuations to those of an all-atom molecular dynamics (MD) simulation. Those spring constants indicate how strong the interactions are between the ribosomal components, and they are in good agreement with various experimental data. Nearly all the bridges between the small and large ribosomal subunits are indicated by CG interactions with large spring constants. The head of the small subunit is very mobile because it has minimal CG interactions with the rest of the subunit; however, a large number of small subunit proteins bind to maintain the internal structure of the head. The results show a clear connection between the intermolecular interactions and the structural and functional properties of the ribosome because of the reduced complexity in domain-based CG models. The present approach also provides a useful strategy to map interactions between molecules within large biomolecular complexes since it is not straightforward to investigate these by either atomistic MD simulations or residue-based elastic network models.  相似文献   

9.
In the course of protein biosynthesis, the 3′-ends of aminoacyl-tRNA (aa-tRNA) and peptidyl-tRNA specifically interact with macromolecules of the protein biosynthesis machinery. The 3′-end of tRNA consists of an invariant C-C-A single strand. Interaction of the aminoacyl-tRNA 3′-end with elongation factor Tu (EF-Tu) containing bound GTP is necessary for the formation of the aa-tRNA·EF-Tu·GTP complex and, after the complex binds to the ribosome, for the GTP hydrolysis. This process is followed by the specific binding of the aminoacyl-tRNA 3′-end to the aminoacyl (A) site of the ribosome. In this review, a model is proposed that involves Watson-Crick base pairing of the C? C sequence of the aminoacyl-tRNA 3′-end with a specific G? G sequence of the ribosomal 23S RNA. Similarly, peptidyl-tRNA binds with its 3′-end to the peptidyl (P) site of the ribosome. This binding may also involve Watson-Crick base pairing of the C-C-A sequence with a complementary sequence of 23S RNA. It is proposed that peptide bond formation is catalyzed by a functional site of the 23S RNA located near the 3′-ends of aminoacyl-tRNA and peptidyl-tRNA. A model is suggested in which two loops of the 23S RNA, brought into close proximity via folding, are involved both in binding the 3′-ends of the tRNAs and in catalyzing peptide bond formation. This model presumes a dynamic structure for ribosomal RNA, which is modulated by interaction with elongation factors and ribosomal proteins.  相似文献   

10.
We present a review on our interdisciplinary line of research based on strategies of molecular biology and biophysics. These have been applied to the study of the prokaryotic ribosome of the bacterium Escherichia coli. Our investigations on this organelle have continued for more than a decade and we have adopted different spectroscopic biophysical techniques such as: dielectric and fluorescence spectroscopy as well as light scattering (photon correlation spectroscopy). Here we report studies on the whole 70S ribosomes and on the separated subunits 30S and 50S. Our results evidence intrinsic structural features of the subunits: the small shows a more "floppy" structure, while the large one appears to be more rigid. Also, an inner "kernel" formed by the RNA/protein association is found within the ribosome. This kernel is surrounded by a ribonucleoprotein complex more exposed to the solvent. Initial analyses were done on the so called Kaldtschmit-Wittmann ribosome: more recently we have extended the studies to the "tight couple" ribosome known for its better functional performance in vitro. Data evidence a phenomenological correlation between the differential biological activity and the intrinsic structural properties of the two-ribosome species. Finally, investigations were also conducted on particles treated at sub-denaturing temperatures and on ribosomes partially deproteinized by salt treatment (ribosomal cores). Results suggest that the thermal treatment and the selective removal of proteins cause analogous structural alterations.  相似文献   

11.
The acidic L7/L12 (prokaryotes) and P1/P2 (eukaryotes) proteins are the only ribosomal components that occur in more than one, specifically four, copies in the translational machinery. These ribosomal proteins are the only ones that do not directly interact with ribosomal RNA but bind to the particles via a protein, L10 and P0, respectively. They constitute a morphologically distinct feature on the large subunit, the stalk protuberance. Since a long time proteins L7/L12 have been implicated in translation factor binding and in the stimulation of the factor-dependent GTP-hydrolysis. Recent studies reproduced such activities with the isolated components and L7/L12 can therefore in retrospect be regarded as the first GTPase activating proteins identified. GTP-hydrolysis induces a drastic conformational change in elongation factor (EF) Tu, which enables it to dissociate from the ribosome after having successfully delivered aminoacylated tRNA into the A-site. It is also used as a driving force for translocation, mediated by EF-G. The in vitro stimulation of translation-uncoupled EF-G-dependent GTP-hydrolysis seems to be an intrinsic property of the ribosome that is dependent on L7/L12, reaches a maximum with four copies of the proteins per particle, and reflects the in vivo hydrolysis rate during translation. It is much larger than the analogous activity observed for EF-Tu, which is correlated with the in vitro polypeptide synthesis rate. Therefore, at least certain stimulatory activities of L7/L12 are controlled by the ribosomal environment, which in the case of EF-Tu senses the successful codon-anticodon pairing. Present knowledge is consistent with a picture in which proteins L7/L12 constitute a "landing platform" for the factors and after rearrangements induce GTP-hydrolysis. The molecular mechanism of the GTPase activation is unknown. While sequence comparisons show a large diversity in the stalk proteins across the kingdoms, a conserved functional domain organization and conserved designs of their genetic units are discernible. Consistently, stalk transplantation experiments suggest that coevolution took place to maintain functional L7/L12 EF-G and P-protein EF-2 couples. The acidic proteins are organized into three distinct functional parts: An N-terminal domain is responsible for oligomerization and ribosome association, a C-terminal domain is implicated in translation factor interactions, and a hinge region allows a flexible relative orientation of the latter two portions. The bacterial L7/L12 proteins have long been portrayed as highly elongated dimers displaying globular C-terminal domains, helical N-termini, and unstructured hinges. Conversely, recent crystal structures depict a compact hetero-tetrameric assembly with the hinge region adopting either an alpha-helical or an open conformation. Two different dimerization modes can be discerned in these structures. Models suggest that dimerization via one association mode can lead to elongated dimeric complexes with one helical and one unstructured hinge. The physiological role of the other dimerization mode is unclear and is in apparent contradiction to distances measured by fluorescence resonance energy transfer. The discrepancies between the crystal structures and results from other physico-chemical methods may partly be a consequence of the dynamic functions of the proteins, necessitating a high flexibility.  相似文献   

12.
13.
The binding of Drosophila melanogaster ribosomal proteins to D. melanogaster 5S rRNA was studied using affinity chromatography of total ribosomal proteins (TP80) on 5S rRNA linked via adipic acid dihydrazide to Sepharose 4B. Ribosomal proteins which bound 5S rRNA at 0.3 M potassium chloride and were eluted at 1 M potassium chloride were identified as proteins 1, L4, 2/3, L14/L16, and S1, S2, S3, S4, S5, by two-dimensional polyacrylamide gel electrophoresis. Using poly A-Sepharose 4B columns as a model of non-specific binding, we found that a subset of TP80 proteins is also bound. This subset, while containing some of the proteins bound by 5S rRNA columns, was distinctly different from the latter subset, indicating that the binding to 5S rRNA was specific for that RNA species.  相似文献   

14.
Peptidyl–RNA conjugates have various applications in studying the ribosome and enzymes participating in tRNA‐dependent pathways such as Fem transferases in peptidoglycan synthesis. Herein a convergent synthesis of peptidyl–RNAs based on Huisgen–Sharpless cycloaddition for the final ligation step is developed. Azides and alkynes are introduced into tRNA and UDP‐MurNAc‐pentapeptide, respectively. Synthesis of 2′‐azido RNA helix starts from 2′‐azido‐2′‐deoxyadenosine that is coupled to deoxycytidine by phosphoramidite chemistry. The resulting dinucleotide is deprotected and ligated to a 22‐nt RNA helix mimicking the acceptor arm of Ala‐tRNAAla by T4 RNA ligase. For alkyne UDP‐MurNAc‐pentapeptide, meso‐cystine is enzymatically incorporated into the peptidoglycan precursor and reduced, and L ‐Cys is converted to dehydroalanine with O‐(mesitylenesulfonyl)hydroxylamine. Reaction of but‐3‐yne‐1‐thiol with dehydroalanine affords the alkyne‐containing UDP‐MurNAc‐pentapeptide. The CuI‐catalyzed azide alkyne cycloaddition reaction in the presence of tris[(1‐hydroxypropyl‐1H‐1,2,3‐triazol‐4‐yl)methyl]amine provided the peptidyl‐RNA conjugate, which was tested as an inhibitor of non‐ribosomal FemXWv aminoacyl transferase. The bi‐substrate analogue was found to inhibit FemXWv with an IC50 of (89±9) pM , as both moieties of the peptidyl–RNA conjugate contribute to high‐affinity binding.  相似文献   

15.
The electrophoretic mobility shift assay (EMSA) is a common technique to identify and analyze RNA-protein interactions, using the altered electrophoretic mobility of RNA and/or protein upon forming an RNA-protein complex. Traditional techniques of visualization of the EMSA results include either prelabeling of RNA before complex formation or specific RNA- or protein-staining after electrophoresis. Recently, two-color fluorescent staining (TCFS) methods were developed, in which the nucleic acid is stained first and scanned; subsequently, the protein is stained and scanned. In the current study, we developed a TCFS system, in which RNA and protein are stained with SYBR Green I and with SYPRO Red, respectively. The gel is subsequently scanned in two channels in a laser scanner to detect both simultaneously. Furthermore, we show that tetramethylrhodamine (TAMRA)-labeled proteins can subsequently be monitored in multicomponent RNA-protein complexes. This novel two-color fluorescence staining is simple, sensitive, and significantly faster than other comparable procedures and allows the independent quantitative determination of both free or complexed nucleic acids and proteins. The interactions between 23S rRNA and ribosomal protein L11 and the ribosomal protein complex L10/L12(4) were used to demonstrate the advantages of this method.  相似文献   

16.
We demonstrate that surface‐induced dissociation (SID) coupled with ion mobility mass spectrometry (IM‐MS) is a powerful tool for determining the stoichiometry of a multi‐subunit ribonucleoprotein (RNP) complex assembled in a solution containing Mg2+. We investigated Pyrococcus furiosus (Pfu) RNase P, an archaeal RNP that catalyzes tRNA 5′ maturation. Previous step‐wise, Mg2+‐dependent reconstitutions of Pfu RNase P with its catalytic RNA subunit and two interacting protein cofactor pairs (RPP21⋅RPP29 and POP5⋅RPP30) revealed functional RNP intermediates en route to the RNase P enzyme, but provided no information on subunit stoichiometry. Our native MS studies with the proteins showed RPP21⋅RPP29 and (POP5⋅RPP30)2 complexes, but indicated a 1:1 composition for all subunits when either one or both protein complexes bind the cognate RNA. These results highlight the utility of SID and IM‐MS in resolving conformational heterogeneity and yielding insights on RNP assembly.  相似文献   

17.
We demonstrate that surface‐induced dissociation (SID) coupled with ion mobility mass spectrometry (IM‐MS) is a powerful tool for determining the stoichiometry of a multi‐subunit ribonucleoprotein (RNP) complex assembled in a solution containing Mg2+. We investigated Pyrococcus furiosus (Pfu) RNase P, an archaeal RNP that catalyzes tRNA 5′ maturation. Previous step‐wise, Mg2+‐dependent reconstitutions of Pfu RNase P with its catalytic RNA subunit and two interacting protein cofactor pairs (RPP21?RPP29 and POP5?RPP30) revealed functional RNP intermediates en route to the RNase P enzyme, but provided no information on subunit stoichiometry. Our native MS studies with the proteins showed RPP21?RPP29 and (POP5?RPP30)2 complexes, but indicated a 1:1 composition for all subunits when either one or both protein complexes bind the cognate RNA. These results highlight the utility of SID and IM‐MS in resolving conformational heterogeneity and yielding insights on RNP assembly.  相似文献   

18.
Two chiral Cu(II) complexes of [Cu2(R‐L)2](PF6)2·2C2H5OH ( 1 ) and [Cu2(S‐L)2](PF6)2·2C2H5OH ( 2 ) (HL = 2‐(Bis(quinolin‐2‐ylmethyl)amino)‐1‐propanol) were designed and synthesized to serve as chemical nucleases and anticancer drugs. X‐ray crystallography revealed that two complexes contain chiral binuclear cations and PF6? anions. The interaction of two complexes with CT‐DNA was researched via various spectroscopic techniques and viscosity measurement, indicating that the complexes were bound to CT‐DNA by a classical intercalation binding mode. In addition, the two complexes exhibited remarkable DNA cleavage activity with an optimal dosage of 10 μM in the absence of any exogenous oxidant agent. Both of the complexes showed excellent in vitro cytotoxicity on A549 cell lines with IC50 values in the low micromolar range. Moreover, complex 2 could damage DNA of A549 cells into fragmentation and then induced cell apoptosis in a dose‐dependent manner, which was demonstrated by comet assay and Hoechst 33342 staining experiment. Further research showed that complex 2 could also induce G2 and S phase cell cycle arrest.  相似文献   

19.
A series of novel ruthenium(II)–cymene complexes ( 1 – 8 ) containing substituted pyridyl–thiazole ligands, [Ru(η6p‐cymene)(L)Cl]Cl (L = N,N‐chelating derivatives), have been synthesized and characterized using elemental analysis, infrared, 1H NMR and 13C NMR spectroscopies and mass spectrometry. All these complexes not only display marked cytotoxicity in vitro against three different human cancer cell lines (HeLa, A549 and MDA‐MB‐231), but also exhibit promising anti‐metastatic activity at sub‐cytotoxic concentrations. Cell cycle analysis shows that the ruthenium(II) complex‐induced growth inhibition was mainly caused by S‐phase cell cycle arrest. Further protein level analysis suggests that compound 5 may exert antitumor activity via a p53‐independent mechanism.  相似文献   

20.
Blockade of the protein–protein interaction between the transmembrane protein programmed cell death protein 1 (PD‐1) and its ligand PD‐L1 has emerged as a promising immunotherapy for treating cancers. Using the technology of mirror‐image phage display, we developed the first hydrolysis‐resistant D ‐peptide antagonists to target the PD‐1/PD‐L1 pathway. The optimized compound DPPA‐1 could bind PD‐L1 at an affinity of 0.51 μM in vitro. A blockade assay at the cellular level and tumor‐bearing mice experiments indicated that DPPA‐1 could also effectively disrupt the PD‐1/PD‐L1 interaction in vivo. Thus D ‐peptide antagonists may provide novel low‐molecular‐weight drug candidates for cancer immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号