首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel CoII-catalyzed polyene cyclization was developed that is uniquely effective when performed in hexafluoroisopropanol as the solvent. The process is presumably initiated by metal-catalyzed hydrogen-atom transfer (MHAT) to 1,1-disubstituted or monosubstituted alkenes, and the reaction is remarkable for its tolerance of internal alkenes bearing either electron-rich methyl or electron-deficient nitrile substituents. Electron-rich aromatic terminators are required in both cases. Terpenoid scaffolds with different substitution patterns are obtained with excellent diastereoselectivities, and the bioactive C20-oxidized abietane diterpenoid carnosaldehyde was made to showcase the utility of the nitrile-bearing products. Also provided are the results of several mechanistic experiments that suggest the process features an MHAT-induced radical bicyclization with late-stage oxidation to regenerate the aromatic terminator.  相似文献   

2.
Reported here is a copper‐catalyzed 1,2‐methoxy methoxycarbonylation of alkenes by an unprecedented use of methyl formate as a source of both the methoxy and the methoxycarbonyl groups. This reaction transforms styrene and its derivatives into value‐added β‐methoxy alkanoates and cinnamates, as well as medicinally important five‐membered heterocycles, such as functionalized tetrahydrofurans, γ‐lactones, and pyrrolidines. A ternary β‐diketiminato‐CuI‐styrene complex, fully characterized by NMR spectroscopy and X‐ray crystallographic analysis, is capable of catalyzing the same transformation. These findings suggest that pre‐coordination of electron‐rich alkenes to copper might play an important role in accelerating the addition of nucleophilic radicals to electron‐rich alkenes, and could have general implications in the design of novel radical‐based transformations.  相似文献   

3.
Although there has been significant progress in the development of transition‐metal‐catalyzed hydrosilylations of alkenes over the past several decades, metal‐free hydrosilylation is still rare and highly desirable. Herein, we report a convenient visible‐light‐driven metal‐free hydrosilylation of both electron‐deficient and electron‐rich alkenes that proceeds through selective hydrogen atom transfer for Si−H activation. The synergistic combination of the organophotoredox catalyst 4CzIPN with quinuclidin‐3‐yl acetate enabled the hydrosilylation of electron‐deficient alkenes by selective Si−H activation while the hydrosilylation of electron‐rich alkenes was achieved by merging photoredox and polarity‐reversal catalysis.  相似文献   

4.
Photoredox‐catalyzed reductive difluoromethylation of electron‐deficient alkenes was achieved in one step under tin‐free, mild and neutral conditions. This protocol affords a facile method to introduce RCF2 (R=H, Ph, Me, and CH2N3) groups at sites β to electron‐withdrawing groups. It was found that TTMS (tris(trimethylsilyl)silane) served nicely as both the H‐atom donor and the electron donor in the catalytic cycle. Experimental and DFT computational results provided evidence that RCF2 (R=H, Ph, Me) radicals are nucleophilic in nature.  相似文献   

5.
The asymmetric Friedel–Crafts alkylation of electron‐rich N‐containing heterocycles with nitroalkenes under catalysis of diphenylamine‐tethered bis(oxazoline) and bis(thiazoline)‐ZnII complexes was investigated. In the reaction of indole derivatives, the complex of ligand 4 f with trans‐diphenyl substitutions afforded better results than previously published ligand 4 e with cis‐diphenyl substitutions. Excellent yields (up to greater than 99 %) and enantioselectivities (up to 97 %) were achieved in most cases. The complex of ligand 4 d bearing tert‐butyl groups gave the best results in the reactions of pyrrole. Moderate to good yields (up to 91 %) and enantioselectivities (up to 91 %) were achieved in most cases. The origin of the enantioselectivity was attributed to the NH–π interaction between the catalyst and the incoming aromatic system in the transition state. Such an interaction was confirmed through comparison of the enantioselectivity and the absolute configuration of the products in the reactions catalyzed by designed ligands.  相似文献   

6.
A copper‐catalyzed ketooxygenation of electron‐deficient alkenes was developed. This approach combines O?H alkylation, aerobic decarboxylation, and oxygenation in one transformation. Mechanistic investigation of this reaction showed that the copper salt is responsible for both generating the amidoxyl radical and promoting aerobic decarboxylation.  相似文献   

7.
Cobalt‐catalyzed cross‐dimerization of simple alkenes with 1,3‐enynes is reported. A [2+2] cycloaddition reaction occurred, with alkenes bearing no allylic hydrogen, by reductive elimination of a η3‐butadienyl cobaltacycle. On the other hand, aliphatic alkenes underwent 1,4‐hydroallylation by means of exo‐cyclic β‐H elimination. These reactions can provide cyclobutenes and allenes that were previously difficult to access, from simple substrates in a highly chemo‐ and regioselective manner.  相似文献   

8.
In the electrophilic C−H borylation of electron‐rich aromatic compounds with catecholborane, the catalytic generation of the boron electrophile is initiated by heterolysis of the B−H bond by various Lewis and Brønsted acids, with a boronium ion formed exclusively. After ligand dissociation, the corresponding borenium ion undergoes regioselective electrophilic aromatic substitution on aniline derivatives as well as nitrogen‐containing heterocycles. The catalysis is optimized using B(C6F5)3 as the initiator and proceeds without the addition of an external base or dihydrogen acceptor. Temperatures above 80 °C are generally required to secure efficient turnover in these Friedel–Crafts‐type reactions. Mechanistic experiments reveal that regeneration of the boronium/borenium ion with dihydrogen release is rate‐determining. This finding finally led to the discovery that, with added alkenes, catalytic C−H borylations can, for the first time, be carried out at room temperature.  相似文献   

9.
Diboration of unsaturated organic compounds is an extremely useful reaction in synthetic chemistry. Herein, we report the first diboration of a nitrile by an electron‐rich diborane, mediated by an electrophilic borane. The reaction is metal‐free, and all of the reagents are readily available.  相似文献   

10.
Anion–π interactions generally exist between an anion and an electron‐deficient π‐ring because of the electron‐accepting character of the ring. In this paper, we report orbital effect‐induced anomalous binding between electron‐rich π systems and F? through anion–π interactions calculated at the MP2/6‐31+G(d,p) and ωB97X‐D/6‐31+G(d,p) levels of theory. We find that anion–π interactions between F? and electron‐rich π rings increase markedly with increasing number of π electrons and size of the π rings. This is contrary to intuition because anion–π interactions would be expected to gradually decrease because of gradually increasing Coulombic repulsion between the negative charge of the anions and gradually increasing number of π electrons of the aromatic surfaces. Energy decomposition analysis showed that the key to this anomalous effect is the more effective delocalization of negative charge to the unoccupied π* orbitals of larger π rings, which is termed an “orbital effect”.  相似文献   

11.
A hetero Diels‐Alder reaction with inverse electron demand between 4‐hydroxycoumarin, aromatic aldehydes and electron‐rich alkenes yielded a multitude of 2,4‐disubstituted 3,4‐dihydropyranocoumarins. This route opened an easy access to coumarin anticoagulants and provided a library of pyranocoumarin derivatives.  相似文献   

12.
《化学:亚洲杂志》2017,12(4):459-464
A method that allows hindered ortho ‐substituted aryl iodides to be efficiently coupled to phenylboronic acid using a gold‐catalyzed C−C bond formation is presented. The use of a molecularly‐defined dinuclear gold chloride catalytic precursor that is stabilized by a new tetradentate (N ,N′ )‐diamino‐(P,P′ )‐diphosphino ferrocene hybrid ligand in a Suzuki‐type reaction is described for the first time. Electron‐rich isopropyl groups on phosphorus were found essential for a superior activity, while the performances of a set of analogous gold dinuclear complexes that were fully characterized by multinuclear NMR spectroscopy and XRD analysis, were investigated. Therefore, arylation of para and ortho ‐substituted iodoarenes bearing electron‐rich, electron‐poor functional groups, and even hindered polycyclic aromatic compounds is described.  相似文献   

13.
We report the development of palladium(0)‐catalyzed syn‐selective 1,2‐carboboration and ‐silylation reactions of alkenes containing cleavable directing groups. With B2pin2 or PhMe2Si‐Bpin as nucleophiles and aryl/alkenyl triflates as electrophiles, a broad range of mono‐, di‐, tri‐ and tetrasubstituted alkenes are compatible in these transformations. We further describe a directed dearomative 1,2‐carboboration of electron‐rich heteroarenes by employing this approach. Through use of a removable chiral directing group, we demonstrate the viability of achieving stereoinduction in Heck‐type alkene 1,2‐difunctionalization. This work introduces new avenues to access highly functionalized boronates and silanes with precise regio‐ and stereocontrol.  相似文献   

14.
A series of tertiary phosphine sulfides and selenides have been synthesized in excellent yields (88‐99%) via a three‐component reaction between secondary phosphines, electron‐rich alkenes (styrene, vinyl chalcogenides), and elemental sulfur or selenium, proceeding under solvent‐free conditions (80‐82°C, 4–44 h). The interaction occurs via initial oxidation of secondary phosphines with elemental sulfur or selenium followed by noncatalyzed anti‐Markovnikov addition of the generated R2P(E)H (E = S, Se) species to alkenes to afford the corresponding adducts with high chemo‐ and regioselectivity.  相似文献   

15.
We report the development of palladium(0)‐catalyzed syn‐selective 1,2‐carboboration and ‐silylation reactions of alkenes containing cleavable directing groups. With B2pin2 or PhMe2Si‐Bpin as nucleophiles and aryl/alkenyl triflates as electrophiles, a broad range of mono‐, di‐, tri‐ and tetrasubstituted alkenes are compatible in these transformations. We further describe a directed dearomative 1,2‐carboboration of electron‐rich heteroarenes by employing this approach. Through use of a removable chiral directing group, we demonstrate the viability of achieving stereoinduction in Heck‐type alkene 1,2‐difunctionalization. This work introduces new avenues to access highly functionalized boronates and silanes with precise regio‐ and stereocontrol.  相似文献   

16.
We have developed an unprecedented Pd‐catalyzed formal hydroalkylation of alkynes with hydrazones, which are generated in situ from naturally abundant aldehydes, as both alkylation reagents and hydrogen donors. The hydroalkylation proceeds with high regio‐ and stereoselectivity to form (Z)‐alkenes, which are more difficult to generate compared to (E)‐alkenes. The reaction is compatible with a wide range of functional groups, including hydroxy, ester, ketone, nitrile, boronic ester, amine, and halide groups. Furthermore, late‐stage modifications of natural products and pharmaceutical derivatives exemplify its unique chemoselectivity, regioselectivity, and synthetic applicability. Mechanistic studies indicate the possible involvement of Pd‐hydride intermediates.  相似文献   

17.
The straightforward synthesis of a novel benzocyclotrimer is herein presented. The syn‐product is characterized by an electron‐rich rigid aromatic cavity and a flexible electron‐rich aromatic pocket. The molecule is a potential scaffold for supramolecular applications.  相似文献   

18.
A highly stereoselective three‐component C(sp2)?H bond addition across alkene and polarized π‐bonds is reported for which CoIII catalysis was shown to be much more effective than RhIII. The reaction proceeds at ambient temperature with both aryl and alkyl enones employed as efficient coupling partners. Moreover, the reaction exhibits extremely broad scope with respect to the aldehyde input; electron rich and poor aromatic, alkenyl, and branched and unbranched alkyl aldehydes all couple in good yield and with high diastereoselectivity. Multiple directing groups participate in this transformation, including pyrazole, pyridine, and imine functional groups. Both aromatic and alkenyl C(sp2)?H bonds undergo the three‐component addition cascade, and the alkenyl addition product can readily be converted into diastereomerically pure five‐membered lactones. Additionally, the first asymmetric reactions with CoIII‐catalyzed C?H functionalization are demonstrated with three‐component C?H bond addition cascades employing N‐tert‐butanesulfinyl imines. These examples represent the first transition metal catalyzed C?H bond additions to N‐tert‐butanesulfinyl imines, which are versatile and extensively used intermediates for the asymmetric synthesis of amines.  相似文献   

19.
This report introduces N‐methylpyrrolidone hydroperoxide (NMPOOH)/base as an excellent reagent system for hydroxy‐directed syn selective epoxidation of electron‐deficient olefins, characterized by high diastereoselectivity, short reaction times and remarkable chemoselectivity, especially in presence of oxidatively labile nitrogen or sulfur atoms. NMPOOH also proves efficient in the oxidation of electron‐deficient aromatic aldehydes, in the removal of oxazolidinone chiral auxiliary, and in the functionalization of alkenes and alkynes, showing wide application potential.  相似文献   

20.
The stereoselective synthesis of trisubstituted alkenes is challenging. Here, we show that an iron‐catalyzed anti‐selective carbozincation of terminal alkynes can be combined with a base‐metal‐catalyzed cross‐coupling to prepare trisubstituted alkenes in a one‐pot reaction and with high regio‐ and stereocontrol. Cu‐, Ni‐, and Co‐based catalytic systems are developed for the coupling of sp‐, sp2‐, and sp3‐hybridized carbon electrophiles, respectively. The method encompasses a large substrate scope, as various alkynyl, aryl, alkenyl, acyl, and alkyl halides are suitable coupling partners. Compared with conventional carbometalation reactions of alkynes, the current method avoids pre‐made organometallic reagents and has a distinct stereoselectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号