首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of hierarchical nanosized zeolite materials without growth modifiers and mesoporogens remains a substantial challenge. Herein, we report a general synthetic approach to produce hierarchical nanosized single-crystal aluminophosphate molecular sieves by preparing highly homogeneous and concentrated precursors and heating at elevated temperatures. Accordingly, aluminophosphate zeotypes of LTA (8-rings), AEL (10-rings), AFI (12-rings), and -CLO (20-rings) topologies, ranging from small to extra-large pores, were synthesized. These materials show exceptional properties, including small crystallites (30–150 nm), good monodispersity, abundant mesopores, and excellent thermal stability. A time-dependent study revealed a non-classical crystallization pathway by particle attachment. This work opens a new avenue for the development of hierarchical nanosized zeolite materials and understanding their crystallization mechanism.  相似文献   

2.
A clear and deep understanding of zeolite crystallization with the addition of organosilane is desirable for the reasonable design and preparation of hierarchical zeolites. Herein, the effects of different organosilanes on zeolite crystallization were systematically studied. It was found that organosilane plays the role of an inhibitor in the silanization‐based zeolite preparation, and this inhibition effect was determined by its participation degree. An organosilane with a high participation degree can result in the prolongation of nucleation and growth periods of zeolite as well as the variation of product properties. More importantly, a dynamic participation pathway of organosilane is proposed, that is, the growth of zeolite is accompanied by the continuous removal of organosilane, leading to an increase of product crystallinity as well as the decrease of mesoporosity. This study gives a new insight into the role that organosilane plays in zeolite crystallization, which will help to direct the rational selection of organosilane and design of crystallization condition for the optimal synthesis of hierarchical zeolites.  相似文献   

3.
Herein we report the synthesis and structures of two new small‐pore aluminophosphate molecular sieves PST‐13 and PST‐14 with mutually connected 8‐ring channels. The structure of PST‐13, synthesized using diethylamine as an organic structure‐directing agent, contains penta‐coordinated framework Al atoms bridged by hydroxy groups and thus edge‐sharing 3‐ and 5‐rings. Upon calcination, PST‐13 undergoes a transformation to PST‐14 with loss of bridging hydroxy groups and occluded organic species. The structures of both materials consist “nonjointly” of pairs of previously undiscovered 1,5‐ and 1,6‐open double 4‐rings (d4rs) which are mirror images of each other. We also present a series of novel chemically feasible hypothetical structures built from 1‐open d4r (sti) or 1,3‐open d4r (nsc) units, as well as from these two enantiomeric structural building units.  相似文献   

4.
《Electroanalysis》2017,29(10):2282-2291
This work describes the development of electrochemical sensors based on graphite–polyurethane composite (GPU) modified with aluminophosphate zeolite type 5 (AlPO‐5) and nickel (II) incorporated aluminophosphate type 5 (NiAlPO‐5), in order to evaluate their performance for determination of Cu2+ in ethanol biofuel. These electrodes were initially characterized by cyclic voltammetry. The obtained results revealed that the NiAlPO‐5 with Ni/Al ratio 0.5 presented the best response in terms of sensitivity, and peak width at half height of Cu2+ voltamogramm, which indicate that on these conditions the NiAlPO‐5 electrode is viable for determination of this ion in biofuel samples by square wave stripping voltammetry. The obtained results revealed that the presence of Ni in the zeolite structure (NiAlPO‐5) improves the electrical properties, and increases the peak current for Cu2+ in comparison with the electrode based in AlPO‐5. The proposed method presented a linear response for Cu2+ with good results for limit of detection (9.4×10−9 mol L−1), accuracy (recovery of 115 %) and precision (RSD of 5.9 %).  相似文献   

5.
The crystallization of zeolite beta in a dry gel system is found to follow the orientated attachment growth route, escorted with a temporal morphology change from bulky gel, through aggregation of the particulate to large zeolitic crystals. Modification of the precrystallized gel with organosilanes can be used to tune the morphology of the ultimate beta. When hexadecyltrimethoxysilane (HTS) is employed to modify precrystallized gel, a resumed secondary growth produces a hybrid mesocrystal of agglomerated nanozeolites. Combustive removal of organics leads to the formation of hierarchically porous zeolite beta of 100 to 160 nm, composed of nanocrystal building units ranging from 20 to 40 nm, with a noticeable micropore volume of 0.19 mL g?1 and a meso/macropore size between 5 and 80 nm. Conversely, when 1,8‐bis(triethoxysilyl)octane (BTO) is utilized to modify the same precrystallized gel, assemblages of discrete beta nanozeolite of around 35 nm are generated. These assemblages construct a hierarchical zeolite beta with a micropore volume of 0.20 mL g?1 and auxiliary pores ranging from 5 to 100 nm. Both organosilanes bring about well‐connected hierarchical pore networks. HTS has little effect on the Brønsted/Lewis acidity, whereas BTO causes a substantial reduction of strong Brønsted acid sites. The hierarchical beta zeolite‐supported Pt catalyst exhibits improved catalytic performance for the hydroisomerization of n‐heptane.  相似文献   

6.
The encapsulation of small quaternary ammonium ions in zeolite frameworks could be used as a base for investigation of the crystallization process of colloidal (nanosized) molecular sieves stabilized in water with Raman and (13)C NMR spectroscopic methods. The organic-framework interactions in colloidal microporous materials with LTA, FAU, BEA, and MFI topology have been considered; the results show that the crystallinity of nanosized particles with monomodal particle size distribution stabilized in water can be examined using the vibrational and magnetic resonance spectral features of the organic template molecules occluded in the specific pores and cages in the zeolite framework. The molecular packing effect and restricted mobility due to specific organic/framework interactions result in shifts and substantial broadening of the (13)C NMR signals, as well as in changes of the positions and the relative intensities of the Raman peaks. The spectroscopic methods are very efficient for analyzing the crystalline structures of nanosized molecular sieves stabilized in aqueous suspensions due to no restrictions related to the particle size.  相似文献   

7.
Large‐pore microporous materials are of great interest to process bulky hydrocarbon and biomass‐derived molecules. ITQ‐27 (IWV) has a two‐dimensional pore system bounded by 12‐membered rings (MRs) that lead to internal cross‐sections containing 14 MRs. Investigations into the catalytic behavior of aluminosilicate (zeolite) materials with this framework structure have been limited until now due to barriers in synthesis. The facile synthesis of aluminosilicate IWV in both hydroxide and fluoride media is reported herein using simple, diquaternary organic structure‐directing agents (OSDAs) that are based on tetramethylimidazole. In hydroxide media, a zeolite product with Si/Al=14.8–23.2 is obtained, while in fluoride media an aluminosilicate product with Si/Al up to 82 is synthesized. The material produced in hydroxide media is tested for the hydroisomerization of n‐hexane, and results from this test reaction suggest that the effective pore size of zeolites with the IWV framework structure is similar to but slightly larger than that of ZSM‐12 (MTW), in fairly good agreement with crystallographic data.  相似文献   

8.
In this study, the synthesis of template free zeolite Y and its recrystallization to two types of pure zeolite P and analcime in the presence of the amino acid d‐methionine as structure‐directing agent were investigated. The recrystallization occurred solely when specific heating cycles were applyed. A completely crystallized phase of zeolite Y for the mixture of zeolite P and analcime was observed in the presence of d‐methionine at a concentration of 0.015 <SC>m</SC>. The effect of different Si/Al ratios (2.3–9.3), crystallization temperatures (40–160 °C), and crystallization times (28–96 hours) on the achievement of two different zeolite types were studied as well. Pure zeolite P was obtained during conventional heating to 100 °C for 42 hours, whereas pure analcime zeolite was achieved by heating the mixture to 160 °C for 96 hours. The products were characterized by X‐ray diffraction, scanning electron microscopy, and IR spectroscopy.  相似文献   

9.
The inter-zeolite conversion is a method to convert one meta-stable zeolite to a thermodynamically stable zeolite. Despite the enormous interest, this method is yet to be popularized or standardized in the zeolite community. Intending to provide more insights into hydrothermal conversions from one zeolite to another, this work developed a novel one-pot and flexible synthetic protocol to efficiently obtain the meta-stable *BEA topology and its derived MTW topology by varying the hydrothermal crystallization time. This inter-zeolite conversion process led to changes in the zeolite framework and modified physicochemical properties during the process. Such a transformation was feasible by forming hierarchical zeolite phases sharing a similar “mtw”-based common building units, possibly driving such conversion. The structure-reactivity relationship of four different zeolite materials, synthesized from this one-pot inter-zeolite conversion method, was established concerning their performance in the methanol-to-hydrocarbon (MTH) process, which has been well supported by operando UV-vis diffuse reflectance spectroscopic study coupled with online mass spectrometry and solid-state NMR spectroscopy. As a result, the pathway to synthesize various target zeolites from an identical initial synthesis gel with desired physicochemical properties has been scrutinized.  相似文献   

10.
纳米多级孔分子筛:简短的综述   总被引:1,自引:0,他引:1  
分子筛是一种三维微孔结构的硅铝酸盐晶体,具有灵活多变的骨架和组成、较高的物理和水热稳定性、无毒、高比表面积、离子可交换性以及很低的成本等特点,因而在油品精制、石油化学、农业、水和污水处理等众多领域中用作离子交换剂、催化剂和吸附剂。尽管分子筛的应用是基于其本身的微孔结构,但微孔也导致体积较大的反应物和产物分子的传质阻力高。通过制备纳米尺度和多级孔结构的分子筛等多种手段可克服常规分子筛所具有的传质限制。人们已经开发了多种方法制备了新型的分子筛材料,并考察了它们在各种催化反应和吸附反应中的性能。在反应体系中采用这种多级孔的纳米分子筛,有可能提高催化剂的使用寿命和催化性能,抑制积碳和失活。本综述概述了多级孔分子筛和纳米分子筛的高性能及其合成方法的最新进展,讨论了每个合成方法的优缺点,简述了纳米分子筛和二级孔结构分子筛的催化应用,并与常规分子筛进行了比较。  相似文献   

11.
Conventional bottom-up and top-down methods for synthesizing hierarchical zeolite have led to complicated economic and environmental issues due to the requirement of expensive and hazardous organic molecules, the large amount of acid/base solution, high energy, and expensive starting materials. Besides, the bottom-up method through the hydrothermal crystallization evokes safety issues due to the high autogenous pressure. Accordingly, considerable efforts have been made to develop green route synthesis of hierarchical zeolite by eliminating the use of a solvent (solvent-free), utilizing sustainable starting materials and green secondary template (mesoporogen), as well as eliminating the use of mesoporogen (mesoporogen-free). Other routes, including recycling of mother liquor, steam-assisted conversion, gel-like-solid phase method, and silanization, are also elaborated, as they are reported to promote a green and facile approach for the synthesis of hierarchical zeolites. In this review, we provide recent progress on the development of the green synthesis of hierarchically porous zeolite.  相似文献   

12.
陈磊  卢鹏  袁扬扬  徐力  张晓敏  许磊 《催化学报》2016,(8):1381-1388
分子筛结构的独特性和多样性使其在催化、吸附分离和离子交换等领域有着广泛应用.近年来,纳米分子筛制备和应用受到极大关注.与传统微米分子筛相比,纳米分子筛具有较小的晶粒尺寸、较大的外表面积和较高的表面活性,能显著提高其分离和催化性能.制备纳米晶体的常用方法有过量模板法、空间限定法、晶种法、离子热合成法及微反应器合成法等.目前,已合成出多种拓扑结构的纳米分子筛,包括 FAU, MFI, MEL和CHA等. ZSM-22是一种具有 TON拓扑结构的一维十元环直孔道分子筛(孔口尺寸为0.45 nm ×0.55 nm),在长链烷烃异构化和烯烃异构化等反应中表现出优异的催化活性.水热合成法是制备 ZSM-22分子筛最常用的方法,所得样品晶粒尺寸为2–15μm,但由于 ZSM-22分子筛是一种亚稳态结构,为了防止杂晶生成,合成通常是在剧烈搅拌(通常大于400 r/min)下进行.目前已有报道在较低转速下合成 ZSM-22分子筛,但产物仍为微米晶体;或在微波辅助水热合成条件下合成亚微米 ZSM-22分子筛,但晶体尺寸不可调且合成过程需要较高功率的微波反应器.因此,在水热条件下合成纯纳米 ZSM-22分子筛仍然是一个巨大挑战.本文在上述研究基础上采用改进的水热合成法成功合成出纳米 ZSM-22分子筛,考察了转速﹑硅铝比及乙醇共溶剂对晶粒尺寸的影响,比较了纳米和常规微米 ZSM-22分子筛的甲醇转化反应性能.结果表明,采用改进的水热合成法能够在较低转速下合成出纳米 ZSM-22分子筛,晶体尺寸在150–800 nm范围可调.通过考察转速对晶粒尺寸的影响,发现静态合成条件下无法形成 ZSM-22分子筛,表明 ZSM-22分子筛合成需要一定的转速.转速在10–50 r/min变化时,可以合成出不同晶体尺寸的 ZSM-22分子筛,且随转速提高, ZSM-22分子筛晶体尺寸先减小后增大,表明纳米 ZSM-22分子筛合成存在最佳转速.另外,配料硅铝比能显著影响 ZSM-22分子筛晶体尺寸,随配料硅铝比增加, ZSM-22分子筛晶体尺寸先减小后增大.通过在合成体系中添加乙醇作为共溶剂,考察了有机溶剂对 ZSM-22分子筛晶粒尺寸的影响,发现有机溶剂能显著增大 ZSM-22的晶体尺寸.将本文合成的纳米和常规微米 ZSM-22分子筛用于甲醇转化反应,考察了晶体尺寸对 ZSM-22分子筛甲醇转化反应性能的影响.发现与常规微米 ZSM-22分子筛相比,纳米 ZSM-22分子筛催化剂寿命显著提高,说明晶粒尺寸减小能有效减缓积碳导致的分子筛失活;同时,反应产物中乙烯和芳烃选择性有所提高,这是由于外表面积增大所致.此外,还考察了不同硅铝比 ZSM-22分子筛的甲醇转化反应性能.结果表明,分子筛硅铝比会影响催化剂寿命,但晶体尺寸对催化剂寿命影响更大. ZSM-22分子筛硅铝比增大有助于提高低碳烯烃选择性,减少芳烃生成.  相似文献   

13.
在干凝胶法制备ZSM-5 分子筛的体系中添加晶种导向剂, 控制分子筛的生长, 制备了纳米沸石组装的无粘结剂成型多级孔ZSM-5 分子筛, 一步完成纳米分子筛的制备及组装成型, 即克服了传统纳米粒子难以过滤分离的问题, 同时组装所形成的多级孔有助于改善分子在催化剂内的扩散, 从而提高催化反应效率. 以硅胶、薄水铝石为原料, 四丙基氢氧化铵(TPAOH)和ZSM-5 晶种导向胶作为粘结剂, 通过混捏、挤条得到直径2 mm的条状前驱物, 随后通过干凝胶转换法制备成型分子筛. 所用晶种导向剂组成为0.35TPAOH:1SiO2:20H2O:4C2H5OH. 通过X射线衍射(XRD), 热重(TG)分析和傅里叶变换红外(FTIR)光谱等方法对分子筛晶化过程进行了表征, 结果表明晶种导向剂加入量对分子筛生长速度及多级孔结构均有影响. 当所加晶种导向剂中TPAOH与SiO2的摩尔比为0.025时, 经过3 h晶化, 分子筛相对结晶度达到100%. 扫描电镜(SEM)结果表明, 合成的分子筛尺寸约为200 nm, 组装形成的多级孔分子筛的介孔体积为0.28 cm3·g-1. 通过NH3 程序升温脱附(NH3-TPD)考察了所得成型分子筛的酸性, 发现该分子筛酸性与市售的粉末H-ZSM-5分子筛类似.  相似文献   

14.
The crystallization of colloidal silicalite-1 from clear solution is one of the best understood zeolite formation processes. Colloidal silicalite-1 formation involves a self-assembly process in which nanoslabs and nanotablets with a silicalite-1 type connectivity are formed at intermediate stages. During the assembly process, with strongly anisometric particles present, regions appear with orientational correlations, as evidenced with measurements of dynamic light scattering, viscosity, and rotation of polarized light. The presence of such regions rationalizes the unexpected differences between the crystallization kinetics under microgravity and on earth. The discovery of the locally oriented regions sheds new light on currently poorly understood hydrodynamic effects on the zeolite formation processes, such as the influence of stirring on the phases obtained and the subsequent kinetics. Addition of surfactants or polymers modifies the ordering of the zeolitic building units in the correlated regions, and new types of hierarchical materials named zeogrids and zeotiles can be obtained.  相似文献   

15.
Creation of intrapenetrated mesopores with open highway from external surface into the interior of zeolite crystals are highly desirable that can significantly improve the molecular transport and active sites accessibility of microporous zeolites to afford enhanced catalytic properties. Here, different from traditional zeolite-seeded methods that generally produced isolated mesopores in zeolites, nanosized amorphous protozeolites with embryo structure of zeolites were used as seeds for the construction of single-crystalline hierarchical ZSM-5 zeolites with intrapenetrated mesopores (mesopore volume of 0.51 cm3 g−1) and highly complete framework. In this strategy, in contrast to the conventional synthesis, only a small amount of organic structure directing agents and a low crystallization temperature were adopted to promise the protozeolites as the dominant growth directing sites to induce crystallization. The protozeolite nanoseeds provided abundant nucleation sites for surrounding precursors to be crystallized, followed by oriented coalescence of crystallites resulting in the formation of intrapenetrated mesopores. The as-prepared hierarchical ZSM-5 zeolites exhibited ultra-long lifetime of 443.9 hours and a high propylene selectivity of 47.92 % at a WHSV of 2 h−1 in the methanol-to-propylene reaction. This work provides a facile protozeolite-seeded strategy for the synthesis of intrapenetrated hierarchical zeolites that are highly effective for catalytic applications.  相似文献   

16.
Specially synthesized extra‐large crystallites of zeolite LTA with intentionally added mesoporosity are used for an in‐depth study of guest diffusion in hierarchical nanoporous materials by the pulsed field gradient NMR technique. Using propane as a guest molecule, intracrystalline mass transfer is demonstrated to be adequately described by a single effective diffusivity resulting from the weighted average of the diffusivities in the two (micro‐ and meso‐) pore spaces. Gas‐kinetic order‐of‐magnitude estimates of the diffusivities are in satisfactory agreement with the experimental data and are thus shown to provide a straightforward means for predicting and quantifying the benefit of hierarchically structured nanoporous materials in comparison with their purely microporous equivalent.  相似文献   

17.
Confined space synthesis. A novel route to nanosized zeolites   总被引:1,自引:0,他引:1  
Confined space synthesis is a novel method in zeolite synthesis. It involves crystallization of the zeolite inside the pore system of an inert mesoporous matrix. In this way it is possible to prepare nanosized zeolites with a controlled size distribution by proper choice of the inert matrix. Here, confined space synthesis was adopted to prepare nanosized ZSM-5, zeolite Beta, zeolite X, and zeolite A with tailored crystal size distributions using mesoporous carbon blacks as inert matrices. All zeolites were characterized by X-ray powder diffraction, transmission electron microscopy, and nitrogen adsorption/desorption prior to and after removal of the carbon matrix. ZSM-5 with Si/Al ratios of 50, 100, and infinity (silicalite-1) were synthesized with controlled average crystal sizes in the range 20-75 nm. Nanosized zeolite Beta (7-30 nm), zeolite X (22-60 nm), and zeolite A (25-37 nm) were prepared similarly. Removal of the carbon matrix by controlled combustion allows a convenient method for isolation of the pure and highly crystalline zeolites. Therefore, confined space synthesis appears to be an attractive method for preparation of zeolites with a controlled size distribution.  相似文献   

18.
Diffusion limitation in micropores of zeolites leads to a demand for optimization of zeolite morphology and/or porosity. However, tailoring crystallization processes to realize targeted morphology/porosity is a major challenge in zeolite synthesis. On the basis of previous work on the salt‐aided, seed‐induced route, the template effect of seeds on the formation of micropores, mesopores and even macropores was further explored to selectively achieve desired hierarchical architectures. By carefully investigating the crystallization processes of two typical samples with distinct crystal morphologies, namely, 1) nanocrystallite‐oriented self‐assembled ZSM‐5 zeolite and 2) enriched intracrystal mesoporous ZSM‐5 zeolite, a detailed mechanism is proposed to clarify the role of silicalite‐1 seeds in the formation of diverse morphologies in a salt‐rich heterogeneous system, combined with the transformation of seed‐embedded aluminosilicate gel. On the basis of these conclusions, the morphologies/porosities of products were precisely tailored by deliberately adjusting the synthesis parameters (KF/Si, tetrapropylammonium bromide/Si and H2O/Si ratios and type of organic template) to regulate the kinetics of seed dissolution and seed‐induced recrystallization. This work may not only provide a practical route to control zeolite crystallization for tailoring crystal morphology, but also expands the knowledge of crystal growth mechanisms in a heterogeneous system.  相似文献   

19.
由酸活化的高岭土制备了多级纳米孔HY分子筛。通过改变老化时间和晶化时间可得到最大的多级因子(HF),此时外比表面积最大而微孔孔体积变化不大。运用X射线衍射(XRD)、X射线荧光光谱、N2吸附-脱附法和NH3程序升温脱附对所得样品进行了表征。老化2 d和晶化24 h所制的纳米孔HY分子筛样品的HF值最大。样品的酸性和结晶度也随着制备条件而变化。另外,适量NaCl的嵌入对提高对所制样品的HF值、酸性和结晶度起到重要作用。通过比较样品和常规HY分子筛的XRD峰强度算得样品的结晶度。结果表明,优化合成条件可得到广泛适用于工业化的分子筛制备路线。  相似文献   

20.
Understanding the molecular‐level mechanisms of phase transformation in solids is of fundamental interest for functional materials such as zeolites. Two‐dimensional (2D) zeolites, when used as shape‐selective catalysts, can offer improved access to the catalytically active sites and a shortened diffusion length in comparison with their 3D analogues. However, few materials are known to maintain both their intralayer microporosity and structure during calcination for organic structure‐directing agent (SDA) removal. Herein we report that PST‐9, a new 2D zeolite which has been synthesized via the multiple inorganic cation approach and fulfills the requirements for true layered zeolites, can be transformed into the small‐pore zeolite EU‐12 under its crystallization conditions through the single‐layer folding process, but not through the traditional dissolution/recrystallization route. We also show that zeolite crystal growth pathway can differ according to the type of organic SDAs employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号