首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chitin is one of the most abundant and cheaply available biopolymers in Nature. Chitin has become a valuable starting material for many biotechnological products through manipulation of its N‐acetyl functionality, which can be cleaved under mild conditions using the enzyme family of de‐N‐acetylases. However, the chemoselective enzymatic re‐acylation of glucosamine derivatives, which can introduce new stable functionalities into chitin derivatives, is much less explored. Herein we describe an acylase (CmCDA from Cyclobacterium marinum) that catalyzes the N‐acylation of glycosamine with a range of carboxylic acids under physiological reaction conditions. This biocatalyst closes an important gap in allowing the conversion of chitin into complex glycosides, such as C5‐modified sialosides, through the use of highly selective enzyme cascades.  相似文献   

2.
Chitin is one of the most abundant and cheaply available biopolymers in Nature. Chitin has become a valuable starting material for many biotechnological products through manipulation of its N-acetyl functionality, which can be cleaved under mild conditions using the enzyme family of de-N-acetylases. However, the chemoselective enzymatic re-acylation of glucosamine derivatives, which can introduce new stable functionalities into chitin derivatives, is much less explored. Herein we describe an acylase (CmCDA from Cyclobacterium marinum) that catalyzes the N-acylation of glycosamine with a range of carboxylic acids under physiological reaction conditions. This biocatalyst closes an important gap in allowing the conversion of chitin into complex glycosides, such as C5-modified sialosides, through the use of highly selective enzyme cascades.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Perfluoroaryl boranes are an important class of organometallic Lewis acids. The synthesis of perfluorinated compounds brings special challenges to tried‐and‐true synthetic methodologies. In their Communication on page 2955 ff., W. E. Piers and co‐workers present the synthesis of a new, fully fluorinated heterocyclic borane that is also a member of the rare antiaromatic borole class of compounds. The route relies on normally facile transmetallation reactions made more difficult by the electron‐withdrawing C6F5 groups of the target product.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号