首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Designed peptides derived from the islet amyloid polypeptide (IAPP) cross-amyloid interaction surface with Aβ (termed interaction surface mimics or ISMs) have been shown to be highly potent inhibitors of Aβ amyloid self-assembly. However, the molecular mechanism of their function is not well understood. Using solution-state and solid-state NMR spectroscopy in combination with ensemble-averaged dynamics simulations and other biophysical methods including TEM, fluorescence spectroscopy and microscopy, and DLS, we characterize ISM structural preferences and interactions. We find that the ISM peptide R3-GI is highly dynamic, can adopt a β-like structure, and oligomerizes into colloid-like assemblies in a process that is reminiscent of liquid–liquid phase separation (LLPS). Our results suggest that such assemblies yield multivalent surfaces for interactions with Aβ40. Sequestration of substrates into these colloid-like structures provides a mechanistic basis for ISM function and the design of novel potent anti-amyloid molecules.  相似文献   

2.
The design of inhibitors of protein–protein interactions mediating amyloid self‐assembly is a major challenge mainly due to the dynamic nature of the involved structures and interfaces. Interactions of amyloidogenic polypeptides with other proteins are important modulators of self‐assembly. Here we present a hot‐segment‐linking approach to design a series of mimics of the IAPP cross‐amyloid interaction surface with Aβ (ISMs) as nanomolar inhibitors of amyloidogenesis and cytotoxicity of Aβ, IAPP, or both polypeptides. The nature of the linker determines ISM structure and inhibitory function including both potency and target selectivity. Importantly, ISMs effectively suppress both self‐ and cross‐seeded IAPP self‐assembly. Our results provide a novel class of highly potent peptide leads for targeting protein aggregation in Alzheimer’s disease, type 2 diabetes, or both diseases and a chemical approach to inhibit amyloid self‐assembly and pathogenic interactions of other proteins as well.  相似文献   

3.
The mechanism for the interaction of thioflavin T (ThT) with amyloid fibrils at the molecular level is not known. Here, we used 1H NMR spectroscopy to determine the binding mode of ThT on the surface of fibrils from lysozyme and insulin. Relayed rotating‐frame Overhauser enhancements in ThT were observed, indicating that the orientation of ThT is orthogonal to the fibril surface. Importantly, the assembly state of ThT on both surfaces is different. On the surface of insulin fibrils, ThT is oligomeric, as indicated by rapid 1H spin‐lattice relaxation rate in the rotating frame (R1ρ), presumably due to intermolecular dipole–dipole interactions between ThT molecules. In contrast, ThT on the surface of lysozyme fibrils is a monomer, as indicated by slower 1H R1ρ. These results shed new light into the mechanism for the enhancement of ThT fluorescence and may lead to more efficient detectors of amyloid assemblies, which have escaped detection by ThT in monomer form.  相似文献   

4.
Transmissible spongiform encephalopathy is associated with misfolding of prion protein (PrP) into an amyloid β‐rich aggregate. Previous studies have indicated that PrP interacts with Alzheimer′s disease amyloid‐β peptide (Aβ), but it remains elusive how this interaction impacts on the misfolding of PrP. This study presents the first in vitro evidence that Aβ induces PrP‐amyloid formation at submicromolar concentrations. Interestingly, systematic mutagenesis of PrP revealed that Aβ requires no specific amino acid sequences in PrP, and induces the misfolding of other unrelated proteins (insulin and lysozyme) into amyloid fibrils in a manner analogous to PrP. This unanticipated nonspecific amyloidogenic effect of Aβ indicates that this peptide might be involved in widespread protein aggregation, regardless of the amino acid sequences of target proteins, and exacerbate the pathology of many neurodegenerative diseases.  相似文献   

5.
Oligomeric and protofibrillar aggregates formed by the amyloid‐β peptide (Aβ) are believed to be involved in the pathology of Alzheimer’s disease. Central to Alzheimer pathology is also the fact that the longer Aβ42 peptide is more prone to aggregation than the more prevalent Aβ40. Detailed structural studies of Aβ oligomers and protofibrils have been impeded by aggregate heterogeneity and instability. We previously engineered a variant of Aβ that forms stable protofibrils and here we use solid‐state NMR spectroscopy and molecular modeling to derive a structural model of these. NMR data are consistent with packing of residues 16 to 42 of Aβ protomers into hexameric barrel‐like oligomers within the protofibril. The core of the oligomers consists of all residues of the central and C‐terminal hydrophobic regions of Aβ, and hairpin loops extend from the core. The model accounts for why Aβ42 forms oligomers and protofibrils more easily than Aβ40.  相似文献   

6.
We propose the application of a new label‐free optical technique based on photonic nanostructures to real‐time monitor the amyloid‐beta 1‐42 (Aβ(1‐42)) fibrillization, including the early stages of the aggregation process, which are related to the onset of the Alzheimer’s Disease (AD). The aggregation of Aβ peptides into amyloid fibrils has commonly been associated with neuronal death, which culminates in the clinical features of the incurable degenerative AD. Recent studies revealed that cell toxicity is determined by the formation of soluble oligomeric forms of Aβ peptides in the early stages of aggregation. At this phase, classical amyloid detection techniques lack in sensitivity. Upon a chemical passivation of the sensing surface by means of polyethylene glycol, the proposed approach allows an accurate, real‐time monitoring of the refractive index variation of the solution, wherein Aβ(1‐42) peptides are aggregating. This measurement is directly related to the aggregation state of the peptide throughout oligomerization and subsequent fibrillization. Our findings open new perspectives in the understanding of the dynamics of amyloid formation, and validate this approach as a new and powerful method to screen aggregation at early stages.  相似文献   

7.
The properties of eumelanin‐like particles (EMPs) and pheomelanin‐like particles (PMPs) in regulating the process of amyloid formation of amyloid‐beta 42 (Aβ42) were examined. EMPs and PMPs are effective both in interfering with amyloid aggregation of Aβ42 and in remodeling matured Αβ42 fibers. The results suggest that some (but not all) molecular species consisting of melanin‐like particles (MPs) are responsible for their inhibiting property toward amyloid formation, and the influence is likely manifested by long‐range interactions. Incubating preformed Aβ42 fibers with catechols or MPs leads to the formation of mesh‐like, interconnected Aβ42 fibers encapsulated with melanin‐like material. MPs are kinetically more effective than catechol monomers in this process, and a detailed investigation reveals that 4,5‐dihydroxyindole, a major intermediate in the formation of melanin‐like species, and its derivatives are mainly responsible for remodeling amyloid fibers.  相似文献   

8.
β‐amyloid (Aβ) fibrils are the major species involved in Alzheimer’s disease (AD). An atomic‐resolution molecular structure of Aβ40 fibrils formed in the presence of lipid vesicles was obtained by using magic angle spinning (MAS) solid‐state NMR spectroscopy. The fibril structures formed in the presence of the lipid vesicles are remarkably different from those formed in solution. These results provide insights into the molecular mechanism of Aβ aggregation in the presence of lipid vesicles.  相似文献   

9.
Proteinaceous plaques associated with neurodegenerative diseases contain many biopolymers including the polyanions glycosaminoglycans and nucleic acids. Polyanion‐induced amyloid fibrillation has been implicated in disease etiology, but structural models for amyloid/nucleic acid co‐assemblies remain limited. Here we constrain nucleic acid/peptide interactions with model peptides that exploit electrostatic complementarity and define a novel amyloid/nucleic acid co‐assembly. The structure provides a model for nucleic acid/amyloid co‐assembly as well as insight into the energetic determinants involved in templating amyloid assembly.  相似文献   

10.
Metal complexes are increasingly explored as imaging probes in amyloid peptide related pathologies. We report the first detailed study on the mechanism of interaction between a metal complex and both the monomer and the aggregated form of Aβ1–40 peptide. We have studied lanthanide(III) chelates of two PiB‐derivative ligands (PiB=Pittsburgh compound B), L1 and L2, differing in the length of the spacer between the metal‐complexing DO3A macrocycle (DO3A= 1,4,7,10‐tetraazacyclododecane‐1,4,7‐triacetic acid) and the peptide‐recognition PiB moiety. Surface plasmon resonance (SPR) and saturation transfer difference (STD) NMR spectroscopy revealed that they both bind to aggregated Aβ1–40 (KD=67–160 μM ), primarily through the benzothiazole unit. HSQC NMR spectroscopy on the 15N‐labeled, monomer Aβ1–40 peptide indicates nonsignificant interaction with monomeric Aβ. Time‐dependent circular dichroism (CD), dynamic light scattering (DLS), and TEM investigations of the secondary structure and of the aggregation of Aβ1–40 in the presence of increasing amounts of the metal complexes provide coherent data showing that, despite their structural similarity, the two complexes affect Aβ fibril formation distinctly. Whereas GdL1, at higher concentrations, stabilizes β‐sheets, GdL2 prevents aggregation by promoting α‐helical structures. These results give insight into the behavior of amyloid‐targeted metal complexes in general and contribute to a more rational design of metal‐based diagnostic and therapeutic agents for amyloid‐ associated pathologies.  相似文献   

11.
In Alzheimer’s disease, amyloid‐β (Aβ) peptides aggregate into extracellular fibrillar deposits. Although these deposits may not be the prime cause of the neurodegeneration that characterizes this disease, inhibition or dissolution of amyloid fibril formation by Aβ peptides is likely to affect its development. ThT fluorescence measurements and AFM images showed that the natural antibiotic gramicidin S significantly inhibited Aβ amyloid formation in vitro and could dissolve amyloids that had formed in the absence of the antibiotic. In silico docking suggested that gramicidin S, a cyclic decapeptide that adopts a β‐sheet conformation, binds to the Aβ peptide hairpin‐stacked fibril through β‐sheet interactions. This may explain why gramicidin S reduces fibril formation. Analogues of gramicidin S were also tested. An analogue with a potency that was four‐times higher than that of the natural product was identified.  相似文献   

12.
Lipid rafts being rich in cholesterol and sphingolipids are considered to provide ordered lipid environment in the neuronal membranes, where it is hypothesized that the cleavage of amyloid precursor protein (APP) to Aβ (1-40) and Aβ (1-42) takes place. It is highly likely that the interaction of lipid raft components like cholesterol, sphingomylein or GM1 leads to nucleation of Aβ and results in aggregation or accumulation of amyloid plaques. One has investigated surface pressure-area isotherms of the lipid raft and Aβ (1-40) Langmuir monolayer. The compression-decompression cycles and the stability of the lipid raft Langmuir monolayer are crucial parameters for the investigation of interaction of Aβ (1-40) with the lipid raft Langmuir monolayer. It was revealed that GM1 provides instability to the lipid raft Langmuir monolayer. Adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing neutral (POPC) or negatively charged phospholipid (DPPG) was examined. The adsorption isotherms revealed that the concentration of cholesterol was important for adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing POPC whereas for the lipid raft Langmuir monolayer containing DPPG:cholesterol or GM1 did not play any role. In situ UV-vis absorption spectroscopy supported the interpretation of results for the adsorption isotherms.  相似文献   

13.
Zinc‐induced oligomerization of amyloid‐β peptide (Aβ) produces potentially pathogenic agents of Alzheimer's disease. Mutations and modifications in the metal binding domain 1–16 of Aβ peptide crucially affect its zinc‐induced oligomerization by changing intermolecular zinc mediated interface. The 3D structure of this interface appearing in a range of Aβ species is a prospective drug target for disease modifying therapy. Using NMR spectroscopy, EXAFS spectroscopy, mass spectrometry, and isothermal titration calorimetry the interaction of zinc ions with Aβ fragments 1–7 and 1–10 carrying familial Taiwanese mutation D7H was studied. Zinc ions induce formation of a stable homodimer formed by the two peptide chains fastened by two zinc ions and stacking interactions of imidazole rings. A binuclear zinc interaction fold in the dimer structure was discovered. It can be used for designing zinc‐regulated proteins and zinc‐mediated self‐assembling peptides.  相似文献   

14.
Many details pertaining to the formation and interactions of protein aggregates associated with neurodegenerative diseases are invisible to conventional biophysical techniques. We recently introduced 15N dark‐state exchange saturation transfer (DEST) and 15N lifetime line‐broadening to study solution backbone dynamics and position‐specific binding probabilities for amyloid β (Aβ) monomers in exchange with large (2–80 MDa) protofibrillar Aβ aggregates. Here we use 13Cmethyl DEST and lifetime line‐broadening to probe the interactions and dynamics of methyl‐bearing side chains in the Aβ‐protofibril‐bound state. We show that all methyl groups of Aβ40 populate direct‐contact bound states with a very fast effective transverse relaxation rate, indicative of side‐chain‐mediated direct binding to the protofibril surface. The data are consistent with position‐specific enhancements of 13Cmethyl‐${R{{{\rm tethered}\hfill \atop 2\hfill}}}$ values in tethered states, providing further insights into the structural ensemble of the protofibril‐bound state.  相似文献   

15.
A small library of rationally designed amyloid β [Aβ(1–40)] peptide variants is generated, and the morphology of their fibrils is studied. In these molecules, the structurally important hydrophobic contact between phenylalanine 19 (F19) and leucine 34 (L34) is systematically mutated to introduce defined physical forces to act as specific internal constraints on amyloid formation. This Aβ(1–40) peptide library is used to study the fibril morphology of these variants by employing a comprehensive set of biophysical techniques including solution and solid‐state NMR spectroscopy, AFM, fluorescence correlation spectroscopy, and XRD. Overall, the findings demonstrate that the introduction of significant local physical perturbations of a crucial early folding contact of Aβ(1–40) only results in minor alterations of the fibrillar morphology. The thermodynamically stable structure of mature Aβ fibrils proves to be relatively robust against the introduction of significantly altered molecular interaction patterns due to point mutations. This underlines that amyloid fibril formation is a highly generic process in protein misfolding that results in the formation of the thermodynamically most stable cross‐β structure.  相似文献   

16.
The antibiotic tetracycline was reported to possess an anti-amyloidogenic activity on a variety of amyloidogenic proteins both in in vitro and in vivo models. To unveil the mechanism of action of tetracycline on Aβ1-40 and Aβ1-42 at both molecular and supramolecular levels, we carried out a series of experiments using NMR spectroscopy, FTIR spectroscopy, dynamic laser light-scattering (DLS) and atomic force microscopy (AFM). Firstly we showed that the co-incubation of Aβ1-42 oligomers with tetracycline hinders the toxicity towards N2a cell lines in a dose-dependent manner. Therefore, the nature of the interaction between the drug and Aβ oligomers was investigated. To carry out NMR and FTIR studies we have prepared Aβ peptide solutions containing assemblies ranging from monomers to large oligomers. Saturation transfer difference (STD) NMR experiments have shown that tetracycline did not interact with monomers at variance with oligomers. Noteworthy, in this latter case we observed that this interaction was very peculiar since the transfer of magnetization from Aβ oligomers to tetracycline involved all drug protons. In addition, intermolecular cross-peaks between tetracycline and Aβ were not observed in NOESY spectra, indicating the absence of a specific binding site and suggesting the occurrence of a supramolecular interaction. DLS and AFM studies supported this hypothesis since the co-dissolution of Aβ peptides and tetracycline triggered the immediate formation of new aggregates that improved the solubility of Aβ peptides, preventing in this way the progression of the amyloid cascade. Moreover, competitive NMR binding experiments showed for the first time that tetracycline competes with thioflavin T (ThT) in the binding to Aβ peptides. Our data shed light on a novel mechanism of anti-amyloidogenic activity displayed by tetracycline, governed by hydrophobic and charge multiparticle interactions.  相似文献   

17.
The aggregation of the amyloid β‐peptide into fibrils is a complex process that involves mechanisms such as primary and secondary nucleation, fibril elongation and fibril fragmentation. Some of these processes generate neurotoxic Aβ oligomers, which are involved in the development of Alzheimer's disease. Recent experimental studies have emphasized the role of the fibril as a catalytic surface for the production of highly toxic oligomers during secondary nucleation. By using molecular dynamics simulations, we show that it is the hydrophobic fibril region that causes the structural changes required for catalyzing the formation of β‐sheet‐rich Aβ1‐42 oligomers on the fibril surface. These results reveal, for the first time, the molecular basis of the secondary nucleation pathway.  相似文献   

18.
Protein misfolding and abnormal assembly could lead to aggregates such as oligomer, proto‐fibril, mature fibril, and senior amyloid plaques, which are associated with the pathogenesis of many amyloid diseases. These irreversible amyloid aggregates typically form in vivo and researchers have been endeavoring to find new modulators to invert the aggregation propensity in vitro, which could increase understanding in the mechanism of the aggregation of amyloid protein and pave the way to potential clinical treatment. Graphene oxide (GO) was shown to be a good modulator, which could strongly control the amyloidosis of Aβ (33–42). In particular, quartz crystal microbalance (QCM), circular dichroism (CD) spectroscopy, and atomic force microscopy (AFM) measurements revealed the size‐dependent manner of GO on modulating the assembly of amyloid peptides, which could be a possible way to regulate the self‐assembled nanostructure of amyloid peptide in a predictable manner.  相似文献   

19.
The relationships between amino acid sequence, nano-assemblies, and cytotoxicity to neuron cytotoxicity were investigated using β-sheet-forming peptides from Araneus ventricosus spider silk, and amyloid forming peptides Aβ(12-28) (β1), Aβ(28-42) (β2), and full-length Aβ(1-42). Although silk derived peptides formed nano-assemblies, nanofilaments, and nanofibrils with β-sheet contents raging from 24 to 40%, they showed no significant cytotoxicity to neurons. In contrast, nano-assemblies and nanofibrils formed from Aβ peptides with high β-sheet content demonstrated cytotoxicity to the neurons. These differences in cell response between the silk β-sheets and Aβ peptides indicate that the general propensity to form beta sheets and form nanostructures is not sufficient to predict cytotoxicity, while surface charges of the assemblies are significant factors that impact cytotoxicity.  相似文献   

20.
Inhibition of pathogenic protein aggregation may be an important and straightforward therapeutic strategy for curing amyloid diseases. Small‐molecule aggregation inhibitors of Alzheimer’s amyloid‐β (Aβ) are extremely scarce, however, and are mainly restricted to dye‐ and polyphenol‐type compounds that lack drug‐likeness. Based on the structure‐activity relationship of cyclic Aβ16–20 (cyclo‐[KLVFF]), we identified unique pharmacophore motifs comprising side‐chains of Leu2, Val3, Phe4, and Phe5 residues without involvement of the backbone amide bonds to inhibit Aβ aggregation. This finding allowed us to design non‐peptidic, small‐molecule aggregation inhibitors that possess potent activity. These molecules are the first successful non‐peptidic, small‐molecule aggregation inhibitors of amyloids based on rational molecular design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号