首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal decomposition of formaldehyde diperoxide (1,2,4,5-tetraoxane) in aqueous solution with an initial concentration of 6.22 × 10?3 M was studied in the temperatures range from 403 to 439 K. The reaction was found to follow first-order kinetic law, and formaldehyde was the major decomposition product. The activation parameters of the initial step of the reaction (ΔH = 15.25 ± 0.5 kcal mol?1, ΔS = ?47.78 ± 0.4 cal mol?1K?1, E a = 16.09 ± 0.5 kcal mol?1) support a mechanism involving homolytic rupture of one peroxide bond in the 1,2,4,5-tetraoxane molecule with participation of the solvent and formation of a diradical intermediate.  相似文献   

2.
Restricted rotation about the naphthalenylcarbonyl bonds in the title compounds resulted in mixtures of cis and trans rotamers, the equilibrium and the rotational barriers depending on the substituents. For 2,7-dimethyl-1,8-di-(p-toluoyl)-naphthalene (1) ΔH° = 3.66 ± 0.14 kJ mol?1, ΔS° = 1.67 ± 0.63 J mol?1 K?1, ΔHct = 55.5 ± 1.3 kJ mol?1, ΔHct = 51.9 ± 1.3 kJ mol?1, ΔSct = ?41.3±4.1 J mol?1 K?1 and ΔSct = ?42.9±4.1 J mol?1 K?1. The rotation about the phenylcarbonyl bond requires ΔH = ?56.9±4.4 kJ mol?1 and ΔS = ?20.5±15.3 J mol?1 K?1 for the cis rotamer, and ΔH = 43.5Δ0.4 kJ mol?1 and ΔS =± ?22.4Δ1.3 J mol?1 K?1 for the trans rotamer. The role of electronic factors is likely to be virtually the same for both these rotamers but steric interaction between the two phenyl rings occurs in the cis rotamer only. Hence, the difference of the activation enthalpies obtained for the cis and trans rotamers, ΔΔH?1 = 13.4 kJ mol?1, provides a basis for the estimation of the role of steric factors in this rotation. For the tetracarboxylic acid 2 and its tetramethyl ester 3 the equilibrium is even more shifted towards the trans form because of enhanced steric and electrostatic interactions between the substituents in the cis form. The barriers for the rotation around the phenylcarbonyl bond and the cis-trans isomerization are lowered; an explanation for this result is presented.  相似文献   

3.
2D 1H-1H EXSY NMR spectroscopy show that the free energy of activation ΔG in six 3-allyl-3-borabicyclo[3.3.1]nonane derivatives is significantly higher (72–86 kJ mol?1) than that in typical allylboranes (48–66 kJ mol?1). For the first member of the series, viz., 3-allyl-3-borabicyclo[3.3.1]nonane, the activation parameters of the permanent allylic rearrangement were also determined (ΔH = 82.7±3.4 kJ mol?1, ΔS = ?11.8±10.3 J mol?1 K?1, E A = 85.5±3.4 kJ mol?1, lnA = 29.2±1.2).  相似文献   

4.
A novel complex [Ni(H2O)4(TO)2](NO3)2·2H2O (TO = 1,2,4-triazole-5-one) was synthesized and structurally characterized by X-ray crystal diffraction analysis. The decomposition reaction kinetic of the complex was studied using TG-DTG. A multiple heating rate method was utilized to determine the apparent activation energy (E a) and pre-exponential constant (A) of the former two decomposition stages, and the values are 109.2 kJ mol?1, 1013.80 s?1; 108.0 kJ mol?1, 1023.23 s?1, respectively. The critical temperature of thermal explosion, the entropy of activation (ΔS ), enthalpy of activation (ΔH ) and the free energy of activation (ΔG ) of the initial two decomposition stages of the complex were also calculated. The standard enthalpy of formation of the new complex was determined as being ?1464.55 ± 1.70 kJ mol?1 by a rotating-bomb calorimeter.  相似文献   

5.
In terms of the density functional theory using the B3LYP functional, 1,2,3,4,5,6,7-heptaphenylcycloheptatriene was shown to be the most stable in the boat conformation of the cycloheptatriene ring with the H atom in the equatorial position. 1,5-Sigmatropic shifts of the H atom along the seven-membered ring perimeter take place when it is in the axial position through the asymmetric transition state with the barrier ΔE ZPE = 28.7 kcal mol?1. The H atom can attain the axial position upon inversion of the seven-membered ring, which is accompanied by the orthogonal turn of the phenyl group at the sp3-hybridized C atom (ΔE ZPE = 22.6 kcal mol?1). The energy barrier to the circular rearrangement of the H atom (ΔE ZPE = 32.2 kcal mol?1) explains formation of isomers during the high-temperature synthesis of di(p-tolyl)pentaphenylcycloheptatriene. The barrier to the 1,5-sigmatropic shifts of the phenyl group is 19.7 kcal mol?1 higher than that for the competing shifts of the H atom.  相似文献   

6.
Vanadium(II) ions form with the pyridine-2-carboxylate ligand a deep blue, tris-substituted complex absorbing at 660 nm (ε = 7.2 × 103 M?1) cm?1) with a shoulder at 450 nm. Reversible spectroelectrochemistry and cyclic voltammetry were observed for this complex, with E12 = ?0.448 V vs NHE, and ΔSrcθ = ?6 cal · mol?1 · deg?1. Electron transfer kinetics with [CO(en)3]3+ led to k12 = 3100 M?1 s?, ΔH = 12.4 kcal · mol?1 and ΔS = ?0.9 cal · mol?1 · deg?1 (I = 0.10 M). For the related [Co(NH3)6]3+ complex, k13 = 1.9 × 104 M?1 s?1. The self-exchange rate constant and activation parameters were analysed in terms of relative Marcus theory.  相似文献   

7.
The template polymerization of N-vinylpyrrolidone (NVP) along syndiotactic poly(methacrylic acid) (s1-PMAA) templates has been studied by differential scanning calorimetry (DSC) using the scanning as well as the isothermal technique. The resulting Arrhenius plot covers a temperature range between 65 and 120°C and two parts can be distinguished. Below 80°C the overall activation energy, Ea, and entropy ΔS, are 76 kJ · mol?1 and ?79 J · mol?1 · K?1 respectively, in excellent agreement with previous dilatometric results. These values differ slightly from those of the blank polymerization leading to rate enhancement by a factor of only two. The small difference in activation parameters is explained by the occurrence of desolvation of st-PMAA chains during propagation of the polyvinylpyrrolidone (PVP) radicals along the template. Above 80°C, the decreasing tendency to form complexes between PVP and st-PMAA results in a decreasing template effect and a gradual change of apparent Ea and ΔS values towards those of the blank polymerization. Similar results were obtained with atactic and isotactic PMAA templates, but smaller rate enhancements were observed due to weaker complex formation.  相似文献   

8.
The reactions of acetylacetonato cobalt (III) ion in sodium hydroxide solutions have been studied spectrophotometrically over a range of temperatures and hydroxide ion concentrations. The activation enthalpy, ΔH was 70.6 kJ mol?1 and the activation entropy, ΔS was ? 119 JK?1mol?1, with a rate law of kobs = k2 [OH?]2. A mechanism involving initial de-chelation of the acetylacetone ligand is suggested. The rate of exchange of methyl hydrogen of the acetylacetone ligand was studied, using proton nuclear magnetic resonance. The rate law was kobs = k [OH?]. Initial de-chelation is also suggested as a mechanism for this process. The 13C nuclear magnetic resonance spectrum of the complex is reported.  相似文献   

9.
Treatment of the salt [PPh4]+[Cp*W(S)3]? ( 6 ) with allyl bromide gave the neutral complex [Cp*W(S)2S‐CH2‐CH?CH2] ( 7 ). The product 7 was characterized by an X‐ray crystal structure analysis. Complex 7 features dynamic NMR spectra that indicate a rapid allyl automerization process. From the analysis of the temperature‐dependent NMR spectra a Gibbs activation energy of ΔG (278 K)≈13.7±0.1 kcal mol?1 was obtained [ΔH≈10.4±0.1 kcal mol?1; ΔS≈?11.4 cal mol?1 K?1]. The DFT calculation identified an energetically unfavorable four‐membered transition state of the “forbidden” reaction and a favorable six‐membered transition state of the “Cope‐type” allyl rearrangement process at this transition‐metal complex core.  相似文献   

10.
Alkylation of NH-unsubstituted 5-vinyltetrazole with methyl iodide in the presence of triethylamine in acetonitrile solution led to the formation of isomeric 1- and 2-methyl-5-vinyltetrazoles in 1:1 ratio. The reaction rate constants were measured at 25–55°C. According to the thermodynamic parameters of the reaction [ΔH 66 kJ mol?1, ΔS-74 (mol K)?1, 298 K] the limiting stage of the reaction consists in the electrophilic attack of methyl iodide on an H-complex of the heterocycle with triethylamine.  相似文献   

11.
The reaction of ?H radicals with a number of aliphatic amino acids has been studied by entrapping the resultant radicals as end groups of poly(methyl methacrylate) that have been detected and estimated by the sensitive dye partition technique. The rate constants of the reaction (in mol?1 L S?1) of 7 amino acids at 25°C and at pH 1.00 have been determined as 8.33 × 108 for glycine, 2.56 × 109 for β-alanine, 2.01 × 109 for β-alanine, 3.99 × 109 for 4-amino butyric acid, 7.56 × 109 for (1+) valine, 1.42 × 1010 for (1?) leucine, and 5.98 × 1010 for 6-amino caproic acid. Glycine, α-alanine, β-alanine, and 4-amino butyric acid produced radicals that underwent deamination and incorporated only carboxyl-bearing end groups in the polymer. The other amino acids, leucine, valine, and 6-amino caproic acid, produced at least two types of radicals, radicals that underwent deamination and those that remained intact, and incorporated in the polymer both carboxyl- and amine-bearing end groups but in different amounts. The latter type of radicals were about 29% from 6-amino caproic acid, 23% from leucine, and 18% from valine. The change of pH from 0.80 to 2.72 did not produce any significant change in the end group profile of the polymer obtained, indicating no appreciable change in the rate of the reaction of ?H radicals with the simplest amino acid glycine in the pH range studied.  相似文献   

12.
The ironiron bond energy in [C5H5Fe(CO)2]2 (I) has been determined by measuring the rate of disproportionation of the monoacetyl complex (AcC5H4)(C5H5)Fe2(CO)4 (II) to I and [AcC5H4Fe(CO)2]2 (III). The reaction follows first order kinetics in benzene solution in the temperature range of 60–100°C with activation parameters calculated as: ΔH = 26.9 ± 2.7 kcal mol?1 and ▽s = 2.0 ± 3.2 cal mol?1 deg?1.  相似文献   

13.
We report that 2,6‐lutidine?trichloroborane (Lut?BCl3) reacts with H2 in toluene, bromobenzene, dichloromethane, and Lut solvents producing the neutral hydride, Lut?BHCl2. The mechanism was modeled with density functional theory, and energies of stationary states were calculated at the G3(MP2)B3 level of theory. Lut?BCl3 was calculated to react with H2 and form the ion pair, [LutH+][HBCl3?], with a barrier of ΔH=24.7 kcal mol?1G=29.8 kcal mol?1). Metathesis with a second molecule of Lut?BCl3 produced Lut?BHCl2 and [LutH+][BCl4?]. The overall reaction is exothermic by 6.0 kcal mol?1rG°=?1.1). Alternate pathways were explored involving the borenium cation (LutBCl2+) and the four‐membered boracycle [(CH2{NC5H3Me})BCl2]. Barriers for addition of H2 across the Lut/LutBCl2+ pair and the boracycle B?C bond are substantially higher (ΔG=42.1 and 49.4 kcal mol?1, respectively), such that these pathways are excluded. The barrier for addition of H2 to the boracycle B?N bond is comparable (ΔH=28.5 and ΔG=32 kcal mol?1). Conversion of the intermediate 2‐(BHCl2CH2)‐6‐Me(C5H3NH) to Lut?BHCl2 may occur by intermolecular steps involving proton/hydride transfers to Lut/BCl3. Intramolecular protodeboronation, which could form Lut?BHCl2 directly, is prohibited by a high barrier (ΔH=52, ΔG=51 kcal mol?1).  相似文献   

14.
At room temperature and below, the proton NMR spectrum of N-(trideuteriomethyl)-2-cyanoaziridine consists of two superimposed ABC patterns assignable to two N-invertomers; a single time-averaged ABC pattern is observed at 158.9°C. The static parameters extracted from the spectra in the temperature range from –40.3 to 23.2°C and from the high-temperature spectrum permit the calculation of the thermodynamic quantities ΔH0 = ?475±20 cal mol?1 (?1.987 ± 0.084 kJ mol?1) and ΔS0 = 0.43±0.08 cal mol?1 K?1 (1.80±0.33 J mol?1 K?1) for the cis ? trans equilibrium. Bandshape analysis of the spectra broadened by non-mutual three-spin exchange in the temperature range from 39.4–137.8°C yields the activation parameters ΔHtc = 17.52±0.18 kcal mol?1 (73.30±0.75 kJ mol?1), ΔStc = ?2.08±0.50 cal mol?1 K?1 (?8.70±2.09 J mol?1 K?1) and ΔGtc (300 K) = 18.14±0.03 kcal mol?1 (75.90±0.13 kJ mol?1) for the transcis isomerization. An attempt is made to rationalize the observed entropy data in terms of the principles of statistical thermodynamics.  相似文献   

15.
The kinetics of the oxidation of ketorolac by hexacyanoferrate(III) (HCF) in aqueous alkaline medium at a constant ionic strength of 0.75 mol·dm?3 was studied spectrophotometrically at 300 K. A plausible mechanism was proposed and the rate law was derived. The mechanism of oxidation of ketorolac (KET) in alkaline medium has been shown to proceed via a KET-HCF complex, which decomposes in a slow step followed by other fast steps to give the products. The main oxidative product was identified as (2,3-dihydro-1-hydroxy-1H-pyrrolizin-5-yl-)(phenyl)methanone and is characterized by its LC–ESI–MS spectrum. Thermodynamic parameters of various equilibria of the mechanism were calculated and activation parameters ΔH , ΔS , ΔG and log10 A were found to be 29.9 kJ·mol?1, ?220 J·K?1·mol?1, 96 kJ·mol?1 and 2.70 respectively.  相似文献   

16.
A thoroughly analyzed specimen of β-uranium disulfide of composition US1.992±0.002 has been studied by fluorine-bomb calorimetry. The standard molar energy of combustion: ΔcUmo(US1.992, cr, β, 298.15 K) = ?(4092.5±7.5) kJ·mol?1 has been determined on the basis of the reaction: US1.992(cr, β) + 8.976F2(g) = UF6(cr) + 1.992F6(g). The standard molar enthalpy of formation: ΔfHmo(US1.992, cr, β, 298.15 K) = ?(519.7±8.0) kJ·mol?1 was derived, and from that result ΔfHmo(US2, cr, 298.15 K) = ?(521±8) kJ·mol?1 is estimated.  相似文献   

17.
The rate constants for the reaction of 2,6‐bis(trifluoromethanesulfonyl)‐4‐nitroanisole with some substituted anilines have been measured by spectrophotometric methods in methanol at various temperatures. The data are consistent with the SNAr mechanism. The effect of substituents on the rate of reaction has been examined. Good linear relationships were obtained from the plots of log k1 against Hammett σpara constants values at all temperature with negative ρ values (?1.68 to ?1.11). Activation parameters ΔH varied from 41.6 to 54.3 kJ mol?1 and ΔS from ?142.7 to ?114.6 J mol?1 K?1. The δΔH and δΔS reaction constants were determined from the dependence of ΔH and ΔS activation parameters on the σ substituent constants, by analogy with the Hammett equation. A plot of ΔH versus ΔS for the reaction gave good straight line with 177°C isokinetic temperature. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 203–210, 2010  相似文献   

18.
The thermal stability and kinetics of decomposition of cinnamic acid were investigated by thermogravimetry and differential scanning calorimetry at four heating rates. The activation energies of this process were calculated from analysis of TG curves by methods of Flynn-Wall-Ozawa, Doyle, Distributed Activation Energy Model, ?atava-?esták and Kissinger, respectively. There are only one stage of thermal decomposition process in TG and two endothermic peaks in DSC. For this decomposition process of cinnamic acid, E and logA[s?1] were determined to be 81.74 kJ mol?1 and 8.67, respectively. The mechanism was Mampel Power law (the reaction order, n = 1), with integral form G(α) = α (α = 0.1–0.9). Moreover, thermodynamic properties of ΔH , ΔS , ΔG were 77.96 kJ mol?1, ?90.71 J mol?1 K?1, 119.41 kJ mol?1.  相似文献   

19.
N,N-dimethyl-3-oxa-glutaramic acid was purified and characterized by 1H-NMR, Fourier transform infrared spectroscopy (FT-IR) and elemental analysis. The thermal decomposition of the title compound was studied by means of thermogravimetry differential thermogravimetry (TG-DTG) and FT-IR. The kinetic parameters of its second-stage decomposition reaction were calculated and the decomposition mechanism was discussed. The kinetic model function in a differential form, apparent activation energy and pre-exponential constant of the reaction are 3/2 [(1?α)1/3?1]?1, 203.75 kJ·mol?1 and 1017.95s?1, respectively. The values of ΔS , ΔH and ΔG of the reaction are 94.28 J·mol?1·K?1, 203.75 kJ·mol?1 and 155.75 kJ·mol?1, respectively.  相似文献   

20.
The thermal stability and kinetics of isothermal decomposition of diosgenin were studied by thermogravimetry (TG) and Differential Scanning Calorimeter (DSC). The activation energy of the thermal decomposition process was determined from the analysis of TG curves by the methods of Flynn-Wall-Ozawa, Doyle, ?atava-?esták and Kissinger, respectively. The mechanism of thermal decomposition was determined to be Avrami-Erofeev equation (n = 1/3, n is the reaction order) with integral form G(α) = [?ln(1 ? α)]1/3 (α = 0.10–0.80). E a and logA [s?1] were determined to be 44.10 kJ mol?1 and 3.12, respectively. Moreover, the thermodynamics properties of ΔH , ΔS , and ΔG of this reaction were 38.18 kJ mol?1, ?199.76 J mol?1 K?1, and 164.36 kJ mol?1 in the stage of thermal decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号