首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multi-wall Sn/SnO2@carbon hollow nanofibers evolved from SnO2 nanofibers are designed and programable synthesized by electrospinning, polypyrrole coating, and annealing reduction. The synthesized hollow nanofibers have a special wire-in-double-wall-tube structure with larger specific surface area and abundant inner spaces, which can provide effective contacting area of electrolyte with electrode materials and more active sites for redox reaction. It shows excellent cycling stability by virtue of effectively alleviating pulverization of tin-based electrode materials caused by volume expansion. Even after 2000 cycles, the wire-in-double-wall-tube Sn/SnO2@carbon nanofibers exhibit a high specific capacity of 986.3 mAh g−1 (1 A g−1) and still maintains 508.2 mAh g−1 at high current density of 5 A g−1. This outstanding electrochemical performance suggests the multi-wall Sn/SnO2@ carbon hollow nanofibers are great promising for high performance energy storage systems.  相似文献   

2.
A hierarchical fibrous SnO2/carbon nanocomposite composed of fine SnO2 nanocrystallites immobilized as a thin layer on a carbon nanofiber surface was synthesized employing natural cellulose substance as both scaffold and carbon source. It was achieved by calcination/carbonization of the as‐deposited SnO2‐gel/cellulose hybrid in an argon atmosphere. As being employed as an anode material for lithium‐ion batteries, the porous structures, small SnO2 crystallite sizes, and the carbon buffering matrix possessed by the nanocomposite facilitate the electrode–electrolyte contact, promote the electron transfer and Li+ diffusion, and relieve the severe volume change and aggregation of the active particles during the charge/discharge cycles. Hence, the nanocomposite showed high reversible capacity, significant cycling stability, and rate capability that are superior to the nanotubular SnO2 and SnO2 sol–gel powder counter materials. For such a composite with 27.8 wt % SnO2 content and 346.4 m2 g?1 specific surface area, a capacity of 623 mAh g?1 was delivered after 120 cycles at 0.2 C. Further coating of the SnO2/carbon nanofibers with an additional carbon layer resulted in an improved cycling stability and rate performance.  相似文献   

3.
It is well accepted that metallic tin as a discharge (reduction) product of SnOx cannot be electrochemically oxidized below 3.00 V versus Li+/Li0 due to the high stability of Li2O, though a similar oxidation can usually occur for a transition metal formed from the corresponding oxide. In this work, nanosized Ni2SnO4 and NiO/SnO2 nanocomposite were synthesized by coprecipitation reactions and subsequent heat treatment. Owing to the catalytic effect of nanosized metallic nickel, metallic tin can be electrochemically oxidized to SnO2 below 3.00 V. As a result, the reversible lithium‐storage capacities of the nanocomposite reach 970 mAh g?1 or above, much higher than the theoretical capacity (ca. 750 mAh g?1) of SnO2, NiO, or their composites. These findings extend the well‐known electrochemical conversion reaction to non‐transition‐metal compounds and may have important applications, for example, in constructing high‐capacity electrode materials and efficient catalysts.  相似文献   

4.
A novel ambient hydrolysis deposition (AHD) methodology that employs sequential water adsorption followed by a hydrolysis reaction to infiltrate SnO2 nanoparticles into the nanopores of mesoporous carbon in a conformal and controllable manner is introduced. The empty space in the SnO2/C composites can be adjusted by varying the number of AHD cycles. An SnO2/C composite with an intermediate SnO2 loading exhibited an initial specific delithiation capacity of 1054 mAh g?1 as an anode for Li‐ion batteries. The capacity contribution from SnO2 in the composite electrode approaches the theoretical capacity of SnO2 (1494 mAh g?1) if both Sn alloying and SnO2 conversion reactions are considered to be reversible. The composite shows a specific capacity of 573 mAh g?1 after 300 cycles, that is, one of the most stable cycling performances for SnO2/mesoporous carbon composites. The results demonstrated the importance of well‐tuned empty space in nanostructured composites to accommodate expansion of the electrode active mass during alloying/dealloying and conversion reactions.  相似文献   

5.
The sluggish sodium reaction kinetics, unstable Sn/Na2O interface, and large volume expansion are major obstacles that impede practical applications of SnO2‐based electrodes for sodium‐ion batteries (SIBs). Herein, we report the crafting of homogeneously confined oxygen‐vacancy‐containing SnO2?x nanoparticles with well‐defined void space in porous carbon nanofibers (denoted SnO2?x/C composites) that address the issues noted above for advanced SIBs. Notably, SnO2?x/C composites can be readily exploited as the working electrode, without need for binders and conductive additives. In contrast to past work, SnO2?x/C composites‐based SIBs show remarkable electrochemical performance, offering high reversible capacity, ultralong cyclic stability, and excellent rate capability. A discharge capacity of 565 mAh g?1 at 1 A g?1 is retained after 2000 cycles.  相似文献   

6.
Tin oxide (SnO2) nanotubes with a fiber‐in‐tube structure have been prepared by electrospinning and the mechanism of their formation has been investigated. Tin oxide‐carbon composite nanofibers with a filled structure were formed as an intermediate product, which were then transformed into SnO2 nanotubes with a fiber‐in‐tube structure during heat treatment at 500 °C. Nanofibers with a diameter of 85 nm were found to be located inside hollow nanotubes with an outer diameter of 260 nm. The prepared SnO2 nanotubes had well‐developed mesopores. The discharge capacities of the SnO2 nanotubes at the 2nd and 300th cycles at a current density of 1 A g?1 were measured as 720 and 640 mA h g?1, respectively, and the corresponding capacity retention measured from the 2nd cycle was 88 %. The discharge capacities of the SnO2 nanotubes at incrementally increased current densities of 0.5, 1.5, 3, and 5 A g?1 were 774, 711, 652, and 591 mA h g?1, respectively. The SnO2 nanotubes with a fiber‐in‐tube structure showed superior cycling and rate performances compared to those of SnO2 nanopowder. The unique structure of the SnO2 nanotubes with a fiber@void@tube configuration improves their electrochemical properties by reducing the diffusion length of the lithium ions, and also imparts greater stability during electrochemical cycling.  相似文献   

7.
Tin(II) fluoride (SnF2) has a high Li‐storage capacity because it stores lithium first by a conversion reaction and then by a Li/Sn alloying/dealloying reaction. A polyacrylonitrile (PAN)‐bound SnF2 electrode was heat‐treated to enhance the integral electrical contact and the mechanical strength through its cross‐linked framework. The heat‐treated SnF2 electrode showed reversible capacities of 1047 mAh g?1 in the first cycle and 902 mAh g?1 after 100 cycles. Part of the excess capacity is due to lithium storage at the Sn/LiF interface, and the other part is assumed to correspond to the presence of reduced SnF2 with protons released during the thermal cross‐linking of PAN.  相似文献   

8.
Tin oxide nanoparticles (SnO2 NPs) have been encapsulated in situ in a three‐dimensional ordered space structure. Within this composite, ordered mesoporous carbon (OMC) acts as a carbon framework showing a desirable ordered mesoporous structure with an average pore size (≈6 nm) and a high surface area (470.3 m2 g?1), and the SnO2 NPs (≈10 nm) are highly loaded (up to 80 wt %) and homogeneously distributed within the OMC matrix. As an anode material for lithium‐ion batteries, a SnO2@OMC composite material can deliver an initial charge capacity of 943 mAh g?1 and retain 68.9 % of the initial capacity after 50 cycles at a current density of 50 mA g?1, even exhibit a capacity of 503 mA h g?1 after 100 cycles at 160 mA g?1. In situ encapsulation of the SnO2 NPs within an OMC framework contributes to a higher capacity and a better cycling stability and rate capability in comparison with bare OMC and OMC ex situ loaded with SnO2 particles (SnO2/OMC). The significantly improved electrochemical performance of the SnO2@OMC composite can be attributed to the multifunctional OMC matrix, which can facilitate electrolyte infiltration, accelerate charge transfer, and lithium‐ion diffusion, and act as a favorable buffer to release reaction strains for lithiation/delithiation of the SnO2 NPs.  相似文献   

9.
Zn2GeO4/N‐doped graphene nanocomposites have been synthesized through a fast microwave‐assisted route on a large scale. The resulting nanohybrids are comprised of Zn2GeO4 nanorods that are well‐embedded in N‐doped graphene sheets by in situ reducing and doping. Importantly, the N‐doped graphene sheets serve as elastic networks to disperse and electrically wire together the Zn2GeO4 nanorods, thereby effectively relieving the volume‐expansion/contraction and aggregation of the nanoparticles during charge and discharge processes. We demonstrate that an electrode that is made of the as‐formed Zn2GeO4/N‐doped graphene nanocomposite exhibits high capacity (1463 mAh g?1 at a current density of 100 mA g?1), good cyclability, and excellent rate capability (531 mAh g?1 at a current density of 3200 mA g?1). Its superior lithium‐storage performance could be related to a synergistic effect of the unique nanostructured hybrid, in which the Zn2GeO4 nanorods are well‐stabilized by the high electronic conduction and flexibility of N‐doped graphene sheets. This work offers an effective strategy for the fabrication of functionalized ternary‐oxide‐based composites as high‐performance electrode materials that involve structural conversion and transformation.  相似文献   

10.
A facile method for the large‐scale synthesis of SnO2 nanocrystal/graphene composites by using coarse metallic Sn particles and cheap graphite oxide (GO) as raw materials is demonstrated. This method uses simple ball milling to realize a mechanochemical reaction between Sn particles and GO. After the reaction, the initial coarse Sn particles with sizes of 3–30 μm are converted to SnO2 nanocrystals (approximately 4 nm) while GO is reduced to graphene. Composite with different grinding times (1 h 20 min, 2 h 20 min or 8 h 20 min, abbreviated to 1, 2 or 8 h below) and raw material ratios (Sn:GO, 1:2, 1:1, 2:1, w/w) are investigated by X‐ray diffraction, X‐ray photoelectron spectroscopy, field‐emission scanning electron microscopy and transmission electron microscopy. The as‐prepared SnO2/graphene composite with a grinding time of 8 h and raw material ratio of 1:1 forms micrometer‐sized architected chips composed of composite sheets, and demonstrates a high tap density of 1.53 g cm?3. By using such composites as anode material for LIBs, a high specific capacity of 891 mA h g?1 is achieved even after 50 cycles at 100 mA g?1.  相似文献   

11.
Tin‐based oxide Li2SnO3 has been synthesized by a hydrothermal route as negative material for lithium‐ion batteries. The microstructure and electrochemical properties of the as‐synthesized materials were investigated by some characterizations means and electrochemical measurements. The as‐synthesized Li2SnO3 is a porous rod, which is composed of many uniform and regular nano‐flakes with a size of 50–60 nm. Li2SnO3 also displays an electrochemical performance with high capacity and good cycling stability (510.2 mAh g?1 after 50 cycles at a current density of 60 mA g?1 between 0.0 V and 2.0 V verusus Li/Li+). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A large‐scale hierarchical assembly route is reported for the formation of SnO2 on the nanoscale that contains rigid and robust spheres with irregular channels for rapid access of Li ions into the hierarchically structured interiors. Large volume changes during the process of Li insertion and extraction are accommodated by the SnO2 nanoflake spheres’ internal porosity. The hierarchical SnO2 nanoflake spheres exhibit good lithium storage properties with high capacity and long‐lasting performance when used as lithium‐ion anodes. A reversible capacity of 517 mA h g?1, still greater than the theoretical capacity of graphite (372 mA h g?1), after 50 charge–discharge cycles is attained. Meanwhile, the synthesis process is simple, inexpensive, safe, and broadly applicable, providing new avenues for the rational engineering of electrode materials with enhanced conductivity and power.  相似文献   

13.
Nitrogen‐doped mesoporous hollow carbon spheres (NHCS) consisting of hybridized amorphous and graphitic carbon were synthesized by chemical vapor deposition with pitch as raw material. Treatment with HNO3 vapor was performed to incorporate oxygen‐containing groups on NHCS, and the resulting NHCS‐O showed excellent rate capacity, high reversible capacity, and excellent cycling stability when tested as the anode material in lithium‐ion batteries. The NHCS‐O electrode maintained a reversible specific capacity of 616 mAh g?1 after 250 cycles at a current rate of 500 mA g?1, which is an increase of 113 % compared to the pristine hollow carbon spheres. In addition, the NHCS‐O electrode exhibited a reversible capacity of 503 mAh g?1 at a high current density of 1.5 A g?1. The superior electrochemical performance of NHCS‐O can be attributed to the hybrid structure, high N and O contents, and rich surface defects.  相似文献   

14.
A versatile one‐step method for the general synthesis of metal oxide hollow nanostructures is demonstrated. This method involves the controlled deposition of metal oxides on shaped α‐Fe2O3 crystals which are simultaneously dissolved. A variety of uniform SnO2 hollow nanostructures, such as nanococoons, nanoboxes, hollow nanorings, and nanospheres, can be readily generated. The method is also applicable to the synthesis of shaped TiO2 hollow nanostructures. As a demonstration of the potential applications of these hollow nanostructures, the lithium storage capability of SnO2 hollow structures is investigated. The results show that such derived SnO2 hollow structures exhibit stable capacity retention of 600–700 mAh g?1 for 50 cycles at a 0.2 C rate and good rate capability at 0.5–1 C, perhaps benefiting from the unique structural characteristics.  相似文献   

15.
Hierarchical hollow structures for electrode materials of supercapacitors could enlarge the surface area, accelerate the transport of ions and electrons, and accommodate volume expansion during cycling. Besides, construction of heterostructures would enhance the internal electric fields to regulate the electronic structures. All these features of hierarchical hollow heterostructures are beneficial for promoting the electrochemical properties and stability of electrode materials for high‐performance supercapacitors. Herein, CoO/Co‐Cu‐S hierarchical tubular heterostructures (HTHSs) composed of nanoneedles are prepared by an efficient multi‐step approach. The optimized sample exhibits a high specific capacity of 320 mAh g?1 (2300 F g?1) at 2.0 A g?1 and outstanding cycling stability with 96.5 % of the initial capacity retained after 5000 cycles at 10 A g?1. Moreover, an all‐solid‐state hybrid supercapacitor (HSC) constructed with the CoO/Co‐Cu‐S and actived carbon shows a stable and high energy density of 90.7 Wh kg?1 at a power density of 800 W kg?1.  相似文献   

16.
Phase‐pure anatase TiO2 nanofibers with a fiber‐in‐tube structure were prepared by the electrospinning process. The burning of titanium‐oxide‐carbon composite nanofibers with a filled structure formed as an intermediate product under an oxygen atmosphere produced carbon‐free TiO2 nanofibers with a fiber‐in‐tube structure. The sizes of the nanofiber core and hollow nanotube were 140 and 500 nm, respectively. The heat treatment of the electrospun nanofibers at 450 and 500 °C under an air atmosphere produced grey and white filled‐structured TiO2 nanofibers, respectively. The initial discharge capacities of the TiO2 nanofibers with the fiber‐in‐tube and filled structures and the commercial TiO2 nanopowders were 231, 134, and 223 mA h g?1, respectively, and their corresponding charge capacities were 170, 100, and 169 mA h g?1, respectively. The 1000th discharge capacities of the TiO2 nanofibers with the fiber‐in‐tube and filled structures and the commercial TiO2 nanopowders were 177, 64, and 101 mA h g?1, respectively, and their capacity retentions measured from the second cycle were 89, 82, and 52 %, respectively. The TiO2 nanofibers with the fiber‐in‐tube structure exhibited low charge transfer resistance and structural stability during cycling and better cycling and rate performances than the TiO2 nanofibers with filled structures and the commercial TiO2 nanopowders.  相似文献   

17.
MoS2 nanoflowers with expanded interlayer spacing of the (002) plane were synthesized and used as high‐performance anode in Na‐ion batteries. By controlling the cut‐off voltage to the range of 0.4–3 V, an intercalation mechanism rather than a conversion reaction is taking place. The MoS2 nanoflower electrode shows high discharge capacities of 350 mAh g?1 at 0.05 A g?1, 300 mAh g?1 at 1 A g?1, and 195 mAh g?1 at 10 A g?1. An initial capacity increase with cycling is caused by peeling off MoS2 layers, which produces more active sites for Na+ storage. The stripping of MoS2 layers occurring in charge/discharge cycling contributes to the enhanced kinetics and low energy barrier for the intercalation of Na+ ions. The electrochemical reaction is mainly controlled by the capacitive process, which facilitates the high‐rate capability. Therefore, MoS2 nanoflowers with expanded interlayers hold promise for rechargeable Na‐ion batteries.  相似文献   

18.
Tin is a promising anode candidate for next‐generation lithium‐ion batteries with a high energy density, but suffers from the huge volume change (ca. 260 %) upon lithiation. To address this issue, here we report a new hierarchical tin/carbon composite in which some of the nanosized Sn particles are anchored on the tips of carbon nanotubes (CNTs) that are rooted on the exterior surfaces of micro‐sized hollow carbon cubes while other Sn nanoparticles are encapsulated in hollow carbon cubes. Such a hierarchical structure possesses a robust framework with rich voids, which allows Sn to alleviate its mechanical strain without forming cracks and pulverization upon lithiation/de‐lithiation. As a result, the Sn/C composite exhibits an excellent cyclic performance, namely, retaining a capacity of 537 mAh g?1 for around 1000 cycles without obvious decay at a high current density of 3000 mA g?1.  相似文献   

19.
Three‐dimensional (3D) reticular SnO2 thin films deposited on copper and stainless steel substrates were prepared by the electrostatic spray deposition (ESD) technique. The 3D reticular SnO2 film exhibit a high reversible capacity near 300 mAh g?1 up to the 50th cycle.  相似文献   

20.
A simple, cost‐effective, and easily scalable molten salt method for the preparation of Li2GeO3 as a new type of high‐performance anode for lithium‐ion batteries is reported. The Li2GeO3 exhibits a unique porous architecture consisting of micrometer‐sized clusters (secondary particles) composed of numerous nanoparticles (primary particles) and can be used directly without further carbon coating which is a common exercise for most electrode materials. The new anode displays superior cycling stability with a retained charge capacity of 725 mAh g?1 after 300 cycles at 50 mA g?1. The electrode also offers excellent rate capability with a capacity recovery of 810 mAh g?1 (94 % retention) after 35 cycles of ascending steps of current in the range of 25–800 mA g?1 and finally back to 25 mA g?1. This work emphasizes the importance of exploring new electrode materials without carbon coating as carbon‐coated materials demonstrate several drawbacks in full devices. Therefore, this study provides a method and a new type of anode with high reversibility and long cycle stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号