首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first alkali-metal vanadium iodate fluoride, CsVO2F(IO3), with a novel 3D anionic framework, has been rationally designed and hydrothermally synthesized. The 3D [VO2F(IO3)] framework in CsVO2F(IO3) is built from 0D Λ-shaped cis-[VO3F(IO3)2]4− polyanions via corner-sharing of oxo anions and bridging of the iodate groups. CsVO2F(IO3) displays both a strong second-harmonic generation (SHG) 1.1 times as strong as KTiOPO4 (KTP) under 2.05 μm laser radiation and high laser-induced damage threshold (LIDT) of 107.9 MW cm−2. This work provides a new route to design SHG crystals with stable 3D anionic structures from low-dimensional structural building units.  相似文献   

2.
The combination of d0 transition metal oxofluorides with iodate anions helps to synthesize polar crystals. Herein, a novel polar crystal, K3V2O3F4(IO3)3, which is the first metal vanadium iodate with two types of V5+-centered polyhedra (VO4F2 octahedron and VO3F2 trigonal bipyramid), has been prepared hydrothermally. It crystallizes in the polar space group of Cmc21 and its structure displays an unprecedented 0D [V2O3F4(IO3)3]3− anion, which is composed of Λ-shaped cis-[VO2F2(IO3)2]3− and [VO2F2(IO3)]2− anions interconnected via the corner-sharing of one oxo anion. The synergy gained from the VO4F2, VO3F2 and IO3 groups resulted in K3V2O3F4(IO3)3 exhibiting both a strong second-harmonic generation (SHG) response (1.3 × KTiOPO4) under 2050 nm laser irradiation and a large birefringence (0.158 @ 2050 nm). This study provides a facile route for designing SHG materials by assembling various vanadium oxide-fluoride motifs and iodate anions into one compound.

K3V2O3F4(IO3)3, which is the first metal vanadium iodate containing two different V-centered polyhedra, exhibits a strong SHG effect of 1.3 × KTP and a large birefringence of 0.158 @ 2050 nm.  相似文献   

3.
The first metal iodate fluoride, Bi(IO3)F2, with a strong second harmonic generation (SHG) effect has been prepared. Bi(IO3)F2 crystallizes in the polar space group C2 and features a three‐dimensional [BiF2]+ cationic framework with IO3 groups capping the inner walls of the one‐dimensional tunnels. This [BiF2]+ cationic framework acts as a template for the assembly of the polar IO3 units in a favorable superposed fashion, which leads to the polar structure of the material. Bi(IO3)F2 displays a rather wide transmittance window (0.3–11 μm) and exhibits a very strong SHG response that is about 11.5 times larger than that of KH2PO4 (KDP) under 1064 nm laser radiation and the same as that of KTiOPO4 (KTP) under 2.05 μm laser radiation. Preliminary investigations indicate that Bi(IO3)F2 is a promising nonlinear optical material in the visible and mid‐IR region.  相似文献   

4.
Two new polar potassium gold iodates, namely, K2Au(IO3)5 (Cmc21) and β‐KAu(IO3)4 (C2), have been synthesized and structurally characterized. Both compounds feature zero‐dimensional polar [Au(IO3)4]? units composed of an AuO4 square‐planar unit coordinated by four IO3? ions in a monodentate fashion. In β‐KAu(IO3)4, isolated [Au(IO3)4]? ions are separated by K+ ions, whereas in K2Au(IO3)5, isolated [Au(IO3)4]? ions and non‐coordinated IO3? units are separated by K+ ions. Both compounds are thermally stable up to 400 °C and exhibit high transmittance in the NIR region (λ=800–2500 nm) with measured optical band gaps of 2.65 eV for K2Au(IO3)5 and 2.75 eV for β‐KAu(IO3)4. Powder second‐harmonic generation measurements by using λ=2.05 μm laser radiation indicate that K2Au(IO3)5 and β‐KAu(IO3)4 are both phase‐matchable materials with strong SHG responses of approximately 1.0 and 1.3 times that of KTiOPO4, respectively. Theoretical calculations based on DFT methods confirm that such strong SHG responses originate from a synergistic effect of the AuO4 and IO3 units.  相似文献   

5.
An ammonium‐containing metal iodate fluoride compound, (NH4)Bi2(IO3)2F5, featuring a two‐dimensional double‐layered framework constructed by [BiO2F5]6? and [BiO4F4]9? polyhedra, as well as [IO3]? groups, was successfully synthesized. The well‐ordered alignment of these SHG‐active units leads to an extraordinary strong SHG response of 9.2 times that of KDP. Moreover, this compound possesses a large birefringence (Δn=0.0690 at 589.3 nm), a wide energy band gap (Eg=3.88 eV), and a high laser damage threshold (LDT; 40.2×AgGaS2). In particular, thermochromic behavior was observed for the first time in this type of compound. Such multifunctional crystals will expand the application of nonlinear optical materials.  相似文献   

6.
An ammonium-containing metal iodate fluoride compound, (NH4)Bi2(IO3)2F5, featuring a two-dimensional double-layered framework constructed by [BiO2F5]6− and [BiO4F4]9− polyhedra, as well as [IO3] groups, was successfully synthesized. The well-ordered alignment of these SHG-active units leads to an extraordinary strong SHG response of 9.2 times that of KDP. Moreover, this compound possesses a large birefringence (Δn=0.0690 at 589.3 nm), a wide energy band gap (Eg=3.88 eV), and a high laser damage threshold (LDT; 40.2×AgGaS2). In particular, thermochromic behavior was observed for the first time in this type of compound. Such multifunctional crystals will expand the application of nonlinear optical materials.  相似文献   

7.
The title compound represents a new structure type, in which distorted VO6 octa­hedra are bridged by iodate groups to form infinite two‐dimensional [VO2(IO3)2] layers that are separated by octa­hedrally coordinated Li+ cations.  相似文献   

8.
A family of nonlinear optical materials that contain the halide, oxide, and oxyhalide polar units simultaneously in a single structure, namely ABi2(IO3)2F5 (A=K ( 1 ), Rb ( 2 ), and Cs ( 3 )), have been designed and synthesized. They crystallize in the same polar space group (P 21) with a two‐dimensional double‐layered framework constructed by [BiF5]2− and [BiO2F4]5− units connected to each other by four F atoms, in which two [IO3] groups are linked to [BiO2F4]5− unit on the same side. A hanging Bi−F bond of [BiF5]2− unit is located on the other side via ionic interaction with the layer‐inserted alkali metal ions to form three‐dimensional structure. The well‐ordered alignments of these polar units lead to a very strong second‐harmonic generation response of 12 ( 1 ), 9.5 ( 2 ), and 7.5 ( 3 ) times larger than that of potassium dihydrogen phosphate under 1064 nm laser radiation. All of them exhibited a wide energy bandgap over 3.75 eV, suggesting that they will have a high laser damage threshold.  相似文献   

9.
Ga(IO3)3 crystallizes in the space group P63, with the Ga atom at a site with imposed threefold symmetry. The crystal structure consists of slightly distorted GaO6 octa­hedra that are bridged by I atoms of IO3 groups, giving rise to a three‐dimensional polar network. The framework contains unoccupied hexa­gonal channels running parallel to the hexa­gonal [001] direction. The iodate groups have their stereochemically active non‐bonded electron pairs pointing in the same direction along [001], which creates the polarity in the structure. The I—O bond distances and O—I—O angles are normal, being in the ranges 1.783 (3)–1.847 (2) Å and 94.68 (11)–99.61 (12)°, respectively.  相似文献   

10.
A family of nonlinear optical materials that contain the halide, oxide, and oxyhalide polar units simultaneously in a single structure, namely ABi2(IO3)2F5 (A=K ( 1 ), Rb ( 2 ), and Cs ( 3 )), have been designed and synthesized. They crystallize in the same polar space group (P 21) with a two‐dimensional double‐layered framework constructed by [BiF5]2− and [BiO2F4]5− units connected to each other by four F atoms, in which two [IO3] groups are linked to [BiO2F4]5− unit on the same side. A hanging Bi−F bond of [BiF5]2− unit is located on the other side via ionic interaction with the layer‐inserted alkali metal ions to form three‐dimensional structure. The well‐ordered alignments of these polar units lead to a very strong second‐harmonic generation response of 12 ( 1 ), 9.5 ( 2 ), and 7.5 ( 3 ) times larger than that of potassium dihydrogen phosphate under 1064 nm laser radiation. All of them exhibited a wide energy bandgap over 3.75 eV, suggesting that they will have a high laser damage threshold.  相似文献   

11.
A novel salt-inclusion fluoroiodate [GaF(H2O)][IO3F] derived from CsIO2F2 was ingeniously obtained through anisotropic polycation substitution. Because the catenulate [GaF(H2O)]2+ framework serves as a template for the favorable assembly of the polar [IO3F]2− groups and contributes to the nonlinear coefficient, [GaF(H2O)][IO3F] exhibits a greatly improved second-harmonic generation (SHG) effect of 10 times that of KH2PO4 (KDP) and a considerable band gap of 4.34 eV compared to the parent compound CsIO2F2 (3 × KDP, 4.5 eV). Particularly, to the best of our knowledge, [GaF(H2O)][IO3F] has the largest laser-induced damage threshold (LDT) of 140 × AgGgS2 of the reported iodates. All these results signify that [GaF(H2O)][IO3F] is a promising nonlinear optical (NLO) crystal. This work also proposes that anisotropic polycation substitution is an effective approach to optimize the SHG effect and develop excellent NLO materials.

A novel salt-inclusion fluoroiodate nonlinear optical material, [GaF(H2O)][IO3F], is derived from CsIO2F2 through polycation substitution, and it exhibits an intense SHG effect of 10 times that of KH2PO4 and improved overall performance.  相似文献   

12.
The crystal structure of Ce(IO3)3 consists of one‐dimensional chains of edge‐sharing CeO9 polyhedra which are crosslinked into two‐dimensional layers through bridging IO3 groups. The layers are held together via long I⋯O contacts, resulting in an extended three‐dimensional network. The I—O bond distances and O—I—O angles are normal, lying in the ranges 1.806 (4)–1.846 (4) Å and 89.9 (2)–100.9 (2)°, respectively. The three crystallographically independent iodate groups all show different coordination modes.  相似文献   

13.
The investigation of CdCl2‐HIO3 system, in aqueous and HNO3 solutions, revealed that anhydrous cadmium iodate presents a marked polymorphism. No less than four new Cd(IO3)2polymorphs have been isolated and characterized, two of which showing second harmonic generation activity. Single crystals of ε‐Cd(IO3)2 are obtained by slowly evaporating, at 60 °C, a saturated solution of γ‐Cd(IO3)2 in 30 % nitric acid. This compound crystallizes in the orthorhombic space group Pca21 [a = 17.581(2), b = 5.495(2), c = 11.163(2) Å]. The basic structural unit can be described as the connection of two cadmium polyhedrons with a short metal – metal distance of 3.88Å. These units are further linked through two other iodate bridges resulting in layers parallel to the (100) plane. The 3D linkage is ensured by short bonds of the fourth iodate group.  相似文献   

14.
The first rare earth metal iodate fluoride, Ce(IO3)2F2⋅H2O, was synthesized by a hydrothermal method. In the structure, CeO5F4 polyhedra connect with isolated IO3 groups to form 1D infinite [Ce(IO3)2F2] chains, which interconnect with each other by weak hydrogen bonds to construct the whole structure. Ce(IO3)2F2⋅H2O produces a large second harmonic generation response, which is three times that of potassium dihydrogenphosphate. Theoretical calculations with DFT and dipole moments were performed to illustrate the relationships between the structure and the properties. The results show that Ce(IO3)2F2⋅H2O is a new iodate fluoride with novel structure and potential applications in nonlinear optics.  相似文献   

15.
Excellent nonlinear optical materials simultaneously meet the requirements of large SHG response, phase‐matching capability, wide transparency windows, considerable energy band‐gap, good thermal stability and structure stability. Herein, two new promising nonlinear optical (NLO) crystals LiMII(IO3)3 (MII=Zn and Cd) are rationally designed by the aliovalent substitution strategy from the commercialized α‐LiIO3 with the perfect parallel alignment of IO3 groups. Compared with parent α‐LiIO3 and related AI2MIV(IO3)6, the title compounds exhibit more stable covalent 3D structure, and overcome the racemic twinning problem of AI2MIV(IO3)6. More importantly, both compounds inherit NLO‐favorable structure merits of α‐LiIO3 and show larger SHG response (≈14× and ≈12×KDP), shorter absorption edge (294 and 297 nm) with wider energy band‐gap (4.21 and 4.18 eV), good thermal stability (460 and 430 °C), phase‐matching behaviors, wider optical transparency window and good structure stability, achieving an excellent balance of NLO properties.  相似文献   

16.
In the presence of Cu(II) ions, a chiral rare earth iodate Gd(IO3)3?·?H2O (crystallizing in P21 (no. 4) space group), was synthesized hydrothermally from Gd2O3 and HIO3; the structure is the topologically (3,?8)-connected (43)(4?·?62)(49?·?617?·?82) network, constructed from 3-connected trigonal nodes (I1, I3) and 8-connected tetragonal prism nodes (Gd1).  相似文献   

17.
In dirubidium copper bis[vanadyl(V)] bis(phosphate), Rb2Cu(VO2)2(PO4)2, three different oxo complexes form an anionic framework. VO5 polyhedra in a trigonal bipyramidal configuration and PO4 tetrahedra share vertices to form eight‐membered rings, which lie in layers perpendicular to the a axis of the monoclinic unit cell. Cu atoms at centres of symmetry have square‐planar coordination and link these layers along [100] to form a three‐dimensional anionic framework, viz. [Cu(VO2)2(PO4)2]2−. Intersecting channels in the [100], [001] and [011] directions contain Rb+ cations. Topological relations between this new structure type and the crystal structures of A(VO2)(PO4) (A = Ba, Sr or Pb) and BaCrF2LiF4 are discussed.  相似文献   

18.
Two mixed‐metal gallium iodate fluorides, namely, α‐ and β‐Ba2[GaF4(IO3)2](IO3) ( 1 and 2 ), have been designed by the aliovalent substitutions of α‐ and β‐Ba2[VO2F2(IO3)2](IO3) ( 3 and 4 ) involving one cationic and two anionic sites. Both 1 and 2 display large second‐harmonic generation responses (≈6×KH2PO4 (KDP)), large energy band gaps (4.61 and 4.35 eV), wide transmittance ranges (≈0.27–12.5 μm), and high relevant laser‐induced damage thresholds (29.7× and 28.3×AgGaS2, respectively), which indicates that 1 and 2 are potential second‐order nonlinear optical materials in the ultraviolet to mid‐infrared. Our studies propose that three‐site aliovalent substitution is a facile route for the discovery of good NLO materials.  相似文献   

19.
The first fluorosulfonic ultraviolet (UV) nonlinear optical (NLO) material, C(NH2)3SO3F, is rationally designed by taking KBe2BO3F2 (KBBF) as the parent compound. C(NH2)3SO3F features similar topological layers as KBBF by replacing inorganic (BO3)3? with organic C(NH2)3+ trigonal units and BeO3F with SO3F? tetrahedra. Therefore, C(NH2)3SO3F is a metal‐free UV NLO crystal. Benefiting from the coplanar configuration of the C(NH2)3+ cationic groups, it possesses a large SHG response of 5×KDP and moderate birefringence of 0.133@1064 nm. Besides, it has a short UV cutoff edge of 200 nm. The calculated results reveal the shortest SHG phase‐matching wavelengths can reach 200 nm. These findings highlight the exploration of metal‐free compounds as nontoxic and low‐cost UV NLO materials as a new research area.  相似文献   

20.
Single crystals of Cd(IO3)2·H2O are obtained by slow evaporation of aqueous solutions of CdCl2 and KIO3. This compound crystallizes in the triclinic space group P1¯ [a = 7.119(2), b = 7.952(2), c = 6.646(2)Å, α = 102.17(2)°, β = 114.13(2)°, γ = 66.78(4)°]. The structure consists in Cd — (μ2‐O)2 — Cd dimers with a metal — metal distance of 3.74Å. These dimers are connected through two iodate bridges resulting in layers parallel to the (010) plane. The 3D linkage is ensured by I1 — O1 long bonds (2.775Å).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号