首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
As a promising non‐precious metal photoelectrochemical (PEC) catalyst, MoS2 exhibits high electrocatalytic activity and stability, while the weak light absorption efficiency and low photoresponse current limit its practical application. Herein, a facile co‐assembly approach is proposed to construct porphyrin‐MoS2 composite photoelectrocatalysts. The as‐prepared photoelectrocatalysts show a significantly enhanced photocurrent response as high as 16 μA cm?2, which is about 2 times higher than that of bare MoS2. Furthermore, the obtained porphyrin‐MoS2 catalysts exhibit excellent durability when tested for 23000 s, thus providing a useful strategy for the design of highly efficient dye‐sensitized PEC catalysts.  相似文献   

2.
Molybdenum disulfide (MoS2) is a promising candidate for electronic and optoelectronic applications. However, its application in light harvesting has been limited in part due to crystal defects, often related to small crystallite sizes, which diminish charge separation and transfer. Here we demonstrate a surface‐engineering strategy for 2D MoS2 to improve its photoelectrochemical properties. Chemically exfoliated large‐area MoS2 thin films were interfaced with eight molecules from three porphyrin families: zinc(II)‐, gallium(III)‐, iron(III)‐centered, and metal‐free protoporphyrin IX (ZnPP, GaPP, FePP, H2PP); metal‐free and zinc(II) tetra‐(N‐methyl‐4‐pyridyl)porphyrin (H2T4, ZnT4); and metal‐free and zinc(II) tetraphenylporphyrin (H2TPP, ZnTPP). We found that the photocurrents from MoS2 films under visible‐light illumination are strongly dependent on the interfacial molecules and that the photocurrent enhancement is closely correlated with the highest occupied molecular orbital (HOMO) levels of the porphyrins, which suppress the recombination of electron–hole pairs in the photoexcited MoS2 films. A maximum tenfold increase was observed for MoS2 functionalized with ZnPP compared with pristine MoS2 films, whereas ZnT4‐functionalized MoS2 demonstrated small increases in photocurrent. The application of bias voltage on MoS2 films can further promote photocurrent enhancements and control current directions. Our results suggest a facile route to render 2D MoS2 films useful for potential high‐performance light‐harvesting applications.  相似文献   

3.
Fusion of two N‐annulated perylene (NP) units with a fused porphyrin dimer along the S0–S1 electronic transition moment axis has resulted in new near‐infrared (NIR) dyes 1 a / 1 b with very intense absorption (ε>1.3×105 M ?1 cm?1) beyond 1250 nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10?6 and 6.0×10?6 for 1 a and 1 b , respectively. The NP‐substituted porphyrin dimers 2 a / 2 b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited‐state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer‐like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two‐photon absorption cross‐sections in the NIR region due to extended π‐conjugation. Time‐dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.  相似文献   

4.
The functionalization of MoS2 is of paramount importance for tailoring its properties towards optoelectronic applications and unlocking its full potential. Zinc phthalocyanine (ZnPc) carrying an 1,2‐dithiolane oxide linker was used to functionalize MoS2 at defect sites located at the edges. The structure of ZnPc‐MoS2 was fully assessed by complementary spectroscopic, thermal, and microscopy imaging techniques. An energy‐level diagram visualizing different photochemical events in ZnPc‐MoS2 was established and revealed a bidirectional electron transfer leading to a charge separated state ZnPc. + ‐MoS2.?. Markedly, evidence of the charge transfer in the hybrid material was demonstrated using fluorescence spectroelectrochemistry. Systematic studies performed by femtosecond transient absorption revealed the involvement of excitons generated in MoS2 in promoting the charge transfer, while the transfer was also possible when ZnPc was excited, signifying their potential in light‐energy‐harvesting devices.  相似文献   

5.
Layered two‐dimensional (2D) inorganic transition‐metal dichalchogenides (TMDs) have attracted great interest as a result of their potential application in optoelectronics, catalysis, and medicine. However, methods to functionalize and process such 2D TMDs remain scarce. We have established a facile route towards functionalized layered MoS2. We found that the reaction of liquid‐exfoliated 2D MoS2, with M(OAc)2 salts (M=Ni, Cu, Zn; OAc=acetate) yielded functionalized MoS2–M(OAc)2 materials. Importantly, this method furnished the 2H‐polytype of MoS2 which is a semiconductor. X‐ray photoelectron spectroscopy (XPS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFT–IR), and thermogravimetric analysis (TGA) provide strong evidence for the coordination of MoS2 surface sulfur atoms to the M(OAc)2 salt. Interestingly, functionalization of 2H‐MoS2 allows for its dispersion/processing in more conventional laboratory solvents.  相似文献   

6.
MoS2 particles with different size distributions were prepared by simple ultrasonication of bulk MoS2 followed by gradient centrifugation. Relative to the inert microscale MoS2, nanoscale MoS2 showed significantly improved catalytic activity toward the oxygen‐reduction reaction (ORR) and hydrogen‐evolution reaction (HER). The decrease in particle size was accompanied by an increase in catalytic activity. Particles with a size of around 2 nm exhibited the best dual ORR and HER performance with a four‐electron ORR process and an HER onset potential of ?0.16 V versus the standard hydrogen electrode (SHE). This is the first investigation on the size‐dependent effect of the ORR activity of MoS2, and a four‐electron transfer route was found. The exposed abundant Mo edges of the MoS2 nanoparticles were proven to be responsible for the high ORR catalytic activity, whereas the origin of the improved HER activity of the nanoparticles was attributed to the plentiful exposed S edges. This newly discovered process provides a simple protocol to produce inexpensive highly active MoS2 catalysts that could easily be scaled up. Hence, it opens up possibilities for wide applications of MoS2 nanoparticles in the fields of energy conversion and storage.  相似文献   

7.
The structures of the title complexes, (C6H15N2)2[MoS4], (I), and (C6H16N2)[MoS4], (II), can be described as consisting of discrete tetra­hedral [MoS4]2− dianions that are linked to the organic ammonium cations via weak hydrogen‐bonding inter­actions. The asymmetric unit of (I) consists of a single (±)‐trans‐2‐amino­cyclo­hexyl­ammonium cation in a general position and an [MoS4]2− anion located on a twofold axis, while in (II), two crystallographically independent trans‐cyclo­hexane‐1,4‐diammonium cations located on centres of inversion and one [MoS4]2− anion in a general position are found. The differing dispositions of the amine functionalities in the organic cations in the title complexes lead to different crystal packing arrangements in (I) and (II).  相似文献   

8.
《化学:亚洲杂志》2017,12(22):2889-2893
Bulk molybdenum disulfide (MoS2) itself is virtually insoluble in common organic solvents because of the tight stacks of multiple MoS2 nanosheets. Here we report that V‐shaped polyaromatic compounds with non‐ionic side chains can efficiently exfoliate and disperse the inorganic nanosheets. Simple grinding and sonication (less than total 1 h) of MoS2 powder with the V‐shaped compounds gave rise to large MoS2 nanosheets highly dispersed in NMP through efficient host‐guest S–π interactions. DLS and AFM analyses revealed that the lateral sizes (ca. 150–270 nm) and thicknesses (ca. 2–8 nm) of the products depend on the identity of the non‐ionic side chains on the V‐shaped dispersant.  相似文献   

9.
Directly 2,12‐ and 2,8‐linked ZnII porphyrin oligomers were prepared from 2,12‐ and 2,8‐diborylated ZnII porphyrin by a cross platinum‐induced coupling with a 2‐borylated ZnII porphyrin end unit followed by a triphenylphosphine (PPh3)‐mediated reductive elimination. Comparative studies on the steady‐state absorption and fluorescence spectra and the fluorescence lifetimes led to a conclusion that the exciton in the S1 state is delocalized over approximately four and two ZnII porphyrin units for 2,12‐ and 2,8‐linked ZnII porphyrin arrays, respectively.  相似文献   

10.
As an electrocatalyst with abundant resources and great potential, molybdenum disulfide is regarded as one of the most likely alternatives to expensive noble‐metals catalysts. However, it is still a challenge to achieve large scale production of few‐layer MoS2 with enhancing activity of electrocatalytic hydrogen reaction at ambient conditions. Herein, we developed a simple environmentally friendly two‐step method, which included intercalation reaction and a subsequent electrochemical reduction reaction for mass preparation of defect‐rich desulfurized MoSx (D?MoSx) nanosheets with plentiful sulfur vacancies. The ratio of sulfur‐molybdenum atoms can be adjusted from 2 : 1 to 1.4 : 1 by regulating the desulfurization voltage. It was found that the HER catalytic activity of the D?MoSx was enhanced compared with that of pristine MoS2 (P?MoS2), the current density of D?MoSx (desulfurization at ?1.0 V) at ?0.3 V versus RHE was about 169% of the P?MoS2, and the Tafel slope decreased to 136 mV dec?1. This method can be widely applied to large‐scale preparation of other two‐dimensional materials.  相似文献   

11.
Molybdenum disulfide (MoS2) is a promising candidate as a high‐performing anode material for sodium‐ion batteries (SIBs) due to its large interlayer spacing. However, it suffers from continued capacity fading. This problem could be overcome by hybridizing MoS2 with nanostructured carbon‐based materials, but it is quite challenging. Herein, we demonstrate a single‐step strategy for the preparation of MoS2 coupled with ordered mesoporous carbon nitride using a nanotemplating approach which involves the pyrolysis of phosphomolybdic acid hydrate (PMA), dithiooxamide (DTO) and 5‐amino‐1H‐tetrazole (5‐ATTZ) together in the porous channels of 3D mesoporous silica template. The sulfidation to MoS2, polymerization to carbon nitride (CN) and their hybridization occur simultaneously within a mesoporous silica template during a calcination process. The CN/MoS2 hybrid prepared by this unique approach is highly pure and exhibits good crystallinity as well as delivers excellent performance for SIBs with specific capacities of 605 and 431 mAhg?1 at current densities of 100 and 1000 mAg?1, respectively, for SIBs.  相似文献   

12.
A p‐quinodimethane (p‐QDM)‐bridged porphyrin dimer 1 has been prepared for the first time. An unexpected Michael addition reaction took place when we attempted to synthesize compound 1 by reaction of the cross‐conjugated keto‐linked porphyrin dimers 8 a and 8 b with alkynyl/aryl Grignard reagents. Alternatively, compound 1 could be successfully prepared by intramolecular Friedel–Crafts alkylation of the diol‐linked porphyrin dimer 14 with concomitant oxidation in air. Compound 1 shows intense one‐photon absorption (OPA, λmax=955 nm, ε=45400 M ?1 cm?1) and a large two‐photon absorption (TPA) cross‐section (σ(2)max=2080 GM at 1800 nm) in the near‐infrared (NIR) region due to its extended π‐conjugation and quinoidal character. It also exhibits a short singlet excited‐state lifetime of 25 ps. The cyclic voltammogram of 1 displays multiple redox waves with a small electrochemical energy gap of 0.86 eV. The ground‐state geometry, electronic structure, and optical properties of 1 have been further studied by density functional theory (DFT) calculations and compared with those of the keto‐linked dimer 8 b . This research has revealed that incorporation of a p‐QDM unit into the porphyrin framework had a significant impact on its optical and electronic properties, leading to a novel NIR OPA and TPA chromophore.  相似文献   

13.
meso‐Triazolyl‐appended ZnII–porphyrins were readily prepared by CuI‐catalyzed 1,3‐dipolar cycloaddition of benzyl azide to meso‐ethynylated ZnII–porphyrin (click chemistry). In noncoordinating CHCl3 solvent, spontaneous assembly occurred to form tetrameric array ( 3 )2 from mesomeso‐linked diporphyrins 3 , and dodecameric porphyrin squares ( 4 )4 and ( 5 )4 from the L ‐shaped mesomeso‐linked triporphyrins 4 and 5 . The structures of these assemblies were examined by 1H NMR spectra, absorption spectra, and their gel permeation chromatography (GPC) retention time. Furthermore, the structures of the dodecameric porphyrin squares ( 4 )4 and ( 5 )4 were probed by small‐ and wide‐angle X‐ray scattering (SAXS/WAXS) measurements in solution using a synchrotron source. Excitation‐energy migration processes in these assemblies were also investigated in detail by using both steady‐state and time‐resolved spectroscopic methods, which revealed efficient excited‐energy transfer (EET) between the mesomeso‐linked ZnII–porphyrin units that occurred with time constants of 1.5 ps?1 for ( 3 )2 and 8.8 ps?1 for ( 5 )4.  相似文献   

14.
Two‐dimensional (2D) heterostructured materials, combining the collective advantages of individual building blocks and synergistic properties, have spurred great interest as a new paradigm in materials science. The family of 2D transition‐metal carbides and nitrides, MXenes, has emerged as an attractive platform to construct functional materials with enhanced performance for diverse applications. Here, we synthesized 2D MoS2‐on‐MXene heterostructures through in situ sulfidation of Mo2TiC2Tx MXene. The computational results show that MoS2‐on‐MXene heterostructures have metallic properties. Moreover, the presence of MXene leads to enhanced Li and Li2S adsorption during the intercalation and conversion reactions. These characteristics render the as‐prepared MoS2‐on‐MXene heterostructures stable Li‐ion storage performance. This work paves the way to use MXene to construct 2D heterostructures for energy storage applications.  相似文献   

15.
Recently, nanozymes have attracted extensive attention because of their advantages of combining nanomaterials with enzymes. Herein, hexagonal boron nitride (h‐BN) and nitride‐doped molybdenum disulfide (N?MoS2) nano‐composites (h‐BN/N?MoS2) were synthesized by facile and cost‐effective liquid exfoliation with a solvothermal method in nontoxic ethanol solution. The results show that h‐BN, as a co‐catalyst, can not only dope into the lattice of MoS2 but also form a heterogeneous structure with MoS2NSs. It expanded the layer spacing and specific surface area of MoS2NSs, which was beneficial to the contact between the catalyst and the substrate, and resulted in a synergistic enhancement of the catalytic activity of hydrogen peroxide (H2O2) with MoS2. A colorimetric determination platform of h‐BN/N?MoS2‐TMB‐H2O2 was constructed. It exhibited a wide linear range of 1–1000 μM with a low limit of detection (LOD) of 0.4 μM under optimal conditions, high sensitivity and stability, as well as good reliability (99.4–110.0%) in practice, making the measurement system more widely applicable.1. Introduction  相似文献   

16.
The metallic 1 T phase of MoS2 has been widely identified to be responsible for the improved performances of MoS2 in applications including hydrogen evolution reactions and electrochemical supercapacitors. To this aim, various synthetic methods have been reported to obtain 1 T phase‐rich MoS2. Here, the aim is to evaluate the efficiencies of the bottom‐up (hydrothermal reaction) and top‐down (chemical exfoliation) approaches in producing 1 T phase MoS2. It is established in this study that the 1 T phase MoS2 produced through the bottom‐up approach contains a high proportion of 1 T phase and demonstrates excellent electrochemical and electrical properties. Its performance in the hydrogen evolution reaction and electrochemical supercapacitors also surpassed that of 1 T phase MoS2 produced through a top‐down approach.  相似文献   

17.
Multiporphyrinic assemblies were quantitatively formed, in one step, from a gable‐like zinc(II) bis‐porphyrin ZnP2 and free‐base porphyrins bearing pyridyl groups. The different fragments are held together by axial 4′‐N(pyridyl)–Zn interactions. Formation of a macrocycle ZnP2?(4′‐cisDPyP) and a bis‐macrocycle (ZnP2)2?(TPyP) is discussed. The macrocycle and the bis‐macrocycle were crystallized and studied by X‐ray diffraction, which confirmed the excellent complementarity between the various components. Spectrophotometric and spectrofluorimetric titrations and studies reveal high association constants for both multiporphyrinic assemblies due to the almost perfect geometrical match between the interacting units. As expected, energy transfer from the zinc porphyrin component to the free‐base porphyrin quenches the fluorescence of the zinc porphyrin components in both compounds. But while in ZnP2?(4′‐cis DPyP) sensitization of the emission of the free‐base porphyrin was observed, in (ZnP2)2?(TPyP) excitation of the peripheral Zn porphyrin units does not lead to quantitative sensitization of the luminescence of the free‐base porphyrin acceptor. An unusual HOMO–HOMO electron transfer reaction from ZnP2 to the excited TPyP unit was detected and studied.  相似文献   

18.
As one member of the emerging class of ultrathin two‐dimensional (2D) transition‐metal dichalcogenide (TMD) nanomaterials, the ultra‐thin MoS2 nanosheet has attracted increasing research interest as a result of its unique structure and fascinating properties. Solution‐phase methods are promising for the scalable production, functionalization, hybridization of MoS2 nanosheets, thus enabling the widespread exploration of MoS2‐based nanomaterials for various promising applications. In this Review, an overview of the recent progress of solution‐processed MoS2 nanosheets is presented, with the emphasis on their synthetic strategies, functionalization, hybridization, properties, and applications. Finally, the challenges and opportunities in this research area will be proposed.  相似文献   

19.
High‐resolution scanning electrochemical cell microscopy (SECCM) is used to image and quantitatively analyze the hydrogen evolution reaction (HER) catalytically active sites of 1H‐MoS2 nanosheets, MoS2, and WS2 heteronanosheets. Using a 20 nm radius nanopipette and hopping mode scanning, the resolution of SECCM was beyond the optical microscopy limit and visualized a small triangular MoS2 nanosheet with a side length of ca. 130 nm. The electrochemical cell provides local cyclic voltammograms with a nanoscale spatial resolution for visualizing HER active sites as electrochemical images. The HER activity difference of edge, terrace, and heterojunction of MoS2 and WS2 were revealed. The SECCM imaging directly visualized the relationship of HER activity and number of MoS2 nanosheet layers and unveiled the heterogeneous aging state of MoS2 nanosheets. SECCM can be used for improving local HER activities by producing sulfur vacancies using electrochemical reaction at the selected region.  相似文献   

20.
New porphyrin sensitizers based on donor–π‐acceptor (D‐π‐A) approach have been designed, synthesized, characterized by various spectroscopic techniques and their photovoltaic properties explored. N,N′‐Diphenylamine acts as donor, the porphyrin is the π‐spacer, and either carboxylic acid or cyanoacryclic acid acts as acceptor. All compounds were characterized by using 1H NMR spectroscopy, ESI‐MS, UV–visible emission spectroscopies as well as electrochemical methods. The presence of aromatic groups between porphyrin π‐plane and acceptor group push the absorption of both Soret and Q‐bands of porphyrin towards the red region. The electrochemical properties suggests that LUMO of these sensitizers above the TiO2 conduction band. Finally, the device was fabricated using liquid redox electrolyte (I?/I3?) and its efficiency was compared with that of a leading sensitizer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号