首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Substituent‐ and oxidant‐dependent transformations of allenes are described. Given the profound influence of the substituent on the reactivity of allenes, the subtle differences in allene structures are manifested in the formation of diverse products when reacted with different electrophiles/oxidants. In general, reactions of nonsilylated allenes involve an allylic cation intermediate by forming a C?O bond, at the sp‐hybridized C2, with either DDQ (2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone) or TBHP (tert‐butyl hydroperoxide), along with FeCl2?4 H2O (10 mol %). In contrast, silylated allenes favor the formation of propargylic cation intermediates by transferring the allenic hydride to the oxidant, thus generating 1,3‐enynes (E1 product) or propargylic THBP ethers (SN1 product). The formation of these different putative cationic intermediates from nonsilylated and silylated allenes is strongly supported by DFT calculations.  相似文献   

2.
An olefin‐directed palladium‐catalyzed regio‐ and stereoselective hydroboration of allenes has been developed to afford fully substituted alkenylboron compounds. The reaction showed a broad substrate scope: a number of functionalized allenes, including 2,3‐dienoate, 3,4‐dienoate, 3,4‐dienol, 1,2‐allenylphosphonate, and alkyl‐substituted allenes, could be used in this olefin‐directed allene hydroboration. The olefin unit was proven to be an indispensable element for this transformation.  相似文献   

3.
A rhodium‐catalyzed hydroformylation of 1,1‐disubstituted allenes is reported. Using a RhI/6‐DPPon catalyst system, one can obtain β,γ‐unsaturated aldehydes in high regio‐ and chemoselectivity. The Z‐configured product is formed with up to >95 % selectivity when unsymmetrically 1,1‐disubstituted allenes are submitted to the reaction conditions. This is the first time that these interesting building blocks are accessible by hydroformylation of allenes. The utility of this methodology is demonstrated by further transformations of one of the obtained products.  相似文献   

4.
An enantiodivergent method for the synthesis of multiply substituted allenes is described. Highly enantioenriched, point‐chiral boronic esters were synthesized by homologation of α‐seleno alkenyl boronic esters with lithiated carbamates and eliminated to form axially chiral allene products. By employing either oxidative or alkylative conditions, both syn and anti elimination could be achieved with complete stereospecificity. The process enables the synthesis of either M or P allenes from a single isomer of a point‐chiral precursor and can be employed for the enantioselective assembly of di‐, tri‐, and tetrasubstituted allenes.  相似文献   

5.
《中国化学》2018,36(1):20-24
A highly regio‐, diastereo‐ and enantioselective addition of 2‐acyl imidazoles or 2‐acyl pyridines with allenes promoted by Rh/Lewis acid synergistically catalytic system is described. This atom economic approach leads to the formation of the branched allylic alkylated products including acyclic quaternary all‐carbon stereogenic centres in good yields with good to excellent diastereo‐ and enantioselectivities. Kinetic studies reveal that the rate‐determining step in this process is the oxidative addition of Rh(I) with C—H bond.  相似文献   

6.
1,2‐Cyclohexadienes are transient intermediates that undergo rapid dimerization and intermolecular trapping with activated olefins and heteroatomic nucleophiles. Fluoride‐mediated desilylative elimination of readily accessible 6‐silylcyclohexene‐1‐triflates allows the mild, chemoselective, and functional‐group tolerant generation of cyclic allene intermediates, which undergo efficient trapping reactions with stable 1,3‐dipoles. The reactions proceed with high levels of both regio‐ and diastereoselectivity. The reaction of cyclic allenes with azides is accompanied by the facile loss of dinitrogen, resulting in the formation of tetrahydroindoles or polycylic aziridines depending on the azide employed.  相似文献   

7.
An olefin‐directed palladium‐catalyzed oxidative regio‐ and stereoselective arylation of allenes to afford 1,3,6‐trienes has been established. A number of functionalized allenes, including 2,3‐ and 3,4‐dienoates and 3,4‐dienol derivatives, have been investigated and found to undergo the olefin‐directed allene arylation. The olefin moiety has been proven to be a crucial element for the arylating transformation.  相似文献   

8.
A Z‐selective rhodium‐catalyzed hydrothiolation of 1,3‐disubstituted allenes and subsequent oxidation towards the corresponding allylic sulfones is described. Using the bidentate 1,4‐bis(diphenylphosphino)butane (dppb) ligand, Z/E‐selectivities up to >99:1 were obtained. The highly atom‐economic desymmetrization reaction tolerates functionalized aromatic and aliphatic thiols. Additionally, a variety of symmetric internal allenes, as well as unsymmetrically disubstituted substrates were well tolerated, thus resulting in high regioselectivities. Starting from chiral but racemic 1,3‐disubstituted allenes a dynamic kinetic resolution (DKR) could be achieved by applying (S,S)‐Me‐DuPhos as the chiral ligand. The desired Z‐allylic sulfones were obtained in high yields and enantioselectivities up to 96 % ee.  相似文献   

9.
Enantioselective conjunctive cross‐coupling of enyne‐derived boronate complexes occurs with 1,4 addition of the electrophile and migrating group across the π system. This reaction pathway furnishes α‐boryl allenes as the reaction product. In the presence of a chiral catalyst, both the central and axial chirality of the product can be controlled during product formation.  相似文献   

10.
An enantiospecific palladium‐catalyzed decarboxylative coupling of acyclic β,γ‐alkynoic acids with various aryl iodides to chiral tetrasubstituted allenes is described. The coupling reaction comprises a decarboxylative γ‐palladation of α,α‐disubstituted carboxylic acids to provide the tetrasubstituted allenes with complete point‐to‐axial chirality transfer in excellent yields.  相似文献   

11.
A cooperative Cu/Pd‐catalyzed enantioselective synthesis of multisubstituted allenes is established. By employing chiral sulfoxide phosphine (SOP)/Cu and PdCl2(dppf) complexes as catalysts, the 1,4‐arylboration of 1,3‐enynes provides an efficient approach to trisubstituted chiral allenes with up to 92 % yield and 97:3 er. Furthermore, by using 2‐substituted 1,3‐enynes as substrates, the tetrasubstituted chiral allenes were successfully generated using this strategy. Finally, theoretical calculations indicate that the transmetallation of the allenylcopper species is the rate‐limiting step of this transformation.  相似文献   

12.
The reactivity of allenes in transition‐metal‐catalyzed C?H activation chemistry is governed by the formation of either alkenyl–metal (M–alkenyl) or metal–π‐allyl intermediates. Although either protonation or a β‐hydride elimination is feasible with a M–alkenyl intermediate, cyclization has remained unexplored to date. Furthermore, due to the increased steric hindrance, the regioselectivity for the intramolecular cyclization of the metal–π‐allyl intermediate was hampered towards the more substituted side. To address these issues, a unified approach to synthesize a diverse array of biologically and pharmaceutically relevant heterocyclic moieties by cobalt‐catalyzed directed C?H functionalization was envisioned. Upon successful implementation, the present strategy led to the regioselective formation of dihydroisoquinolin‐1(2H)‐ones, isoquinolin‐1(2H)‐ones, dihydropyridones, and pyridones.  相似文献   

13.
The first asymmetric synthesis of tetrasubstituted α‐amino allenoates by a chiral phosphoric acid catalyzed dearomative γ‐addition reaction of 2,3‐disubstituted indoles to β,γ‐alkynyl‐α‐imino esters is reported. This method provides access to a series of highly functionalized tetrasubstituted allenes featuring quaternary stereocenters in high yields, and with excellent regio‐, diastereo‐, and enantioselectivities under mild conditions without by‐product formation. Representative large‐scale reactions and diverse transformations of the products into various scaffolds with potential biological activities render are also disclosed. The mechanism of the reaction was elucidated by control reactions and DFT calculations.  相似文献   

14.
A formidable challenge at the forefront of organic synthesis is the control of chemoselectivity to enable the selective formation of diverse structural motifs from a readily available substrate class. Presented herein is a detailed study of chemoselectivity with palladium‐based phosphane catalysts and readily available 2‐B(pin)‐substituted allylic acetates, benzoates, and carbonates. Depending on the choice of reagents, catalysts, and reaction conditions, 2‐B(pin)‐substituted allylic acetates and derivatives can be steered into one of three reaction manifolds: allylic substitution, Suzuki–Miyaura cross‐coupling, or elimination to form allenes, all with excellent chemoselectivity. Studies on the chemoselectivity of Pd catalysts in their reactivity with boron‐bearing allylic acetate derivatives led to the development of diverse and practical reactions with potential utility in synthetic organic chemistry.  相似文献   

15.
A new and efficient PdII‐catalyzed intermolecular annulation of N‐benzoylsulfonamide with allenes for the synthesis of 3,4‐dihydroisoquinolin‐1(2H)‐ones is reported. This C?H functionalization is compatible with ambient air and moisture, and it can be applied to terminal or internal allenes with di?erent synthetically attractive functional groups. Control experiments and a kinetic isotope effect study are conducted and a plausible mechanism is proposed.  相似文献   

16.
A protocol for the asymmetric synthesis of highly substituted chiral allenes with control of point and axial chirality has been developed. A palladium‐catalyzed [3+2] cycloaddition using readily available racemic allenes gives access to densely functionalized chiral allenes with excellent yields and functional group tolerance. The catalytic asymmetric protocol utilizes a broad range of allenyl TMM (trimethylenemethane) donors to form cyclopentanes, pyrrolidines, and spirocycles with very good control of regio‐, enantio‐, and diastereoselectivity. The chiral allene moiety is shown to be a valuable functional group for rapid elaboration towards complex targets.  相似文献   

17.
An efficient Cp*CoIII‐catalyzed C8‐dienylation of quinoline‐N‐oxides was achieved by employing allenes bearing leaving groups at the α‐position as the dienylating agents. The reaction proceeds by CoIII‐catalyzed C?H activation of quinoline‐N‐oxides and regioselective migratory insertion of the allene followed by a β‐oxy elimination, leading to overall dienylation. Site‐selective C?H activation was achieved with excellent selectivity under mild reaction conditions, and 30 mol % of a NaF additive was found to be crucial for the efficient dienylation. The methodology features high stereoselectivity, mild reaction conditions, and good functional‐group tolerance. C8‐alkenylation of quinoline‐N‐oxides was achieved in the case of allenes devoid of leaving groups as coupling partners. Furthermore, gram‐scale preparation and preliminary mechanistic experiments were carried out to gain insights into the reaction mechanism.  相似文献   

18.
A nickel‐catalyzed 1,4‐carbofluoroalkylation of 1,3‐enynes to access structurally diverse fluoroalkylated allenes has been established. This method has demonstrated high catalytic reactivity, mild reaction conditions, broad substrate scope, and excellent functional‐group tolerance. The key to success is the use of a nickel catalyst to generate different fluoroalkyl radicals from readily available and structurally diverse fluoroalkyl halides to access 1,4‐difunctionalization of 1,3‐enynes by a radical relay. This strategy provides facile synthesis of structurally diverse multisubstituted allenes, and offers a solution for batch production of various fluorinated bioactive molecules for drug discovery by further transformations.  相似文献   

19.
The highly selective copper‐catalyzed hydroboration of allenes has been developed. Allylboranes and alkenylboranes were selectively prepared by the judicious choice of catalytic species (copper hydride and boryl copper). Furthermore, two types of alkenylboranes could be selectively synthesized by the choice of an appropriate ligand. Mechanistic studies confirmed that the protonation of a (Z)‐σ‐allyl copper species, which was isolated and structurally characterized by single‐crystal X‐ray diffraction, was a key step in these reactions. Besides allenes, this method is also applicable to the selective hydroboration of 1,3‐diene derivatives to afford allylboranes and homoallylboranes.  相似文献   

20.
It has been established that a cationic rhodium(I)/binap complex catalyzes the cross‐cyclotrimerization of two molecules of a monosubstituted allene with one molecule of a functionalized alkyne to give 3,6‐dialkylidenecyclohex‐1‐enes. In contrast, the reactions involving di‐ or trisubstituted allenes and/or unfunctionalized alkynes afforded cross‐dimerization products, substituted dendralenes, through β‐hydrogen elimination from the corresponding rhodacycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号