首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transition metal catalyzed ethylene copolymerization with polar monomers is a highly challenging reaction. After decades of research, the scope of suitable comonomer substrates has expanded from special to fundamental polar monomers and, recently, to 1,1‐disubstituted ethylenes. Described in this contribution is a direct and tandem strategy to realize ethylene copolymerization with various 1,2‐disubstituted ethylenes. The direct route is sensitive to sterics of both the comonomers and the catalyst. In the tandem route, ruthenium‐catalyzed ethenolysis can convert 1,2‐disubstituted ethylenes into terminal olefins, which can be subsequently copolymerized with ethylene to afford polar functionalized polyolefins. The one‐pot, two‐step tandem route is highly versatile and efficient in dealing with challenging substrates. This work is a step forward in terms of expanding the substrate scope for transition metal catalyzed ethylene copolymerization with polar‐functionalized comonomers.  相似文献   

2.
An olefin‐assisted palladium‐catalyzed oxidative carbocyclization–alkoxycarbonylation of bisallenes to afford seven‐membered carbocycles has been established. This dehydrogenative coupling reaction showed excellent substrate scope and functional group compatibility. The reaction exhibited high chemo‐ and regioselectivity, and ester 3 was the only product obtained. The olefin unit has been proven to be indispensable during the reaction. Moreover, intramolecular oxidative coupling suggests that the reaction proceeds via a (π‐allyl)palladium intermediate.  相似文献   

3.
The ability to carry out transition‐metal‐catalyzed copolymerizations of olefins with polar monomers is a great challenge in the field of olefin polymerization. Palladium has been the dominant player in this field, while its low‐cost nickel counterpart has only achieved very limited success. We report the synthesis and evaluation of a highly versatile platform based on diphosphazane monoxide ligands. Both palladium and nickel catalysts bearing these ligands mediate the copolymerization of ethylene with a number of fundamental polar monomers.  相似文献   

4.
The nonpolar nature of polyolefins is one of their biggest limitations. Now, an efficient route to generate polar‐functionalized, crosslinkable, self‐healing, photoresponsive polyolefins with thermoplastic, elastomeric, and thermosetting properties is reported. Tunable amounts of carboxylic acid and a cyclic comonomer are installed onto polyolefins by palladium‐catalyzed terpolymerization reactions. The incorporated carboxylic acid unit can alter the surface properties of polyolefins. The subsequently introduced Fe3+/citric acid combination induces dynamic crosslinking and enables self‐healing. Under UV light irradiation, citric acid reduces Fe3+ to Fe2+ and decreases the crosslinking density. The Fe2+ moiety can be easily oxidized back to Fe3+, making the process reversible at the expense of citric acid. The incorporated cyclic comonomer modulates the crystallinity of polyolefins, provides elastic properties, and installs carbon–carbon double bonds for sulfur‐induced vulcanization.  相似文献   

5.
6.
7.
Magnetic iron oxide nanoparticles synthesized by coprecipitation and thermal decomposition yield largely monodisperse size distributions. The diameters of the coprecipitated particles measured by X‐ray diffraction and transmission electron microscopy are between approximately 9 and 15 nm, whereas the diameters of thermally decomposed particles are in the range of 8 to 10 nm. Coprecipitated particles are indexed as magnetite‐rich and thermally decomposed particles as maghemite‐rich; however, both methods produce a mixture of magnetite and maghemite. Fourier transform IR spectra reveal that the nanoparticles are coated with at least two layers of oleic acid (OA) surfactant. The inner layer is postulated to be chemically adsorbed on the nanoparticle surface whereas the rest of the OA is physically adsorbed, as indicated by carboxyl O? H stretching modes above 3400 cm?1. Differential thermal analysis (DTA) results indicate a double‐stepped weight loss process, the lower‐temperature step of which is assigned to condensation due to physically adsorbed or low‐energy bonded OA moieties. Density functional calculations of Fe–O clusters, the inverse spinel cell, and isolated OA, as well as OA in bidentate linkage with ferrous and ferric atoms, suggest that the higher‐temperature DTA stage could be further broken down into two regions: one in which condensation is due ferrous/ferrous– and/or ferrous/ferric–OA and the other due to condensation from ferrous/ferric– and ferric/ferric–OA complexes. The latter appear to form bonds with the OA carbonyl group of energy up to fivefold that of the bond formed by the ferrous/ferrous pairs. Molecular orbital populations indicate that such increased stability of the ferric/ferric pair is due to the contribution of the low‐lying Fe3+ t2g states into four bonding orbitals between ?0.623 and ?0.410 a.u.  相似文献   

8.
In the current work, we present the successful functionalization and stabilization of P‐25 TiO2 nanoparticles by means of N1,N7‐bis(3‐(4‐tert‐butyl‐pyridium‐methyl)phenyl)‐4‐(3‐(3‐(4‐tert‐butyl‐pyridinium‐methyl)phenylamino)‐3‐oxopropyl)‐4‐(3,4‐dihydroxybenzamido)heptanediamide tribromide ( 1 ). The design of the latter is aimed at nanoparticle functionalization and stabilization with organic building blocks. On one hand, 1 features a catechol anchor to enable its covalent grafting onto the TiO2 surface, and on the other hand, positively charged pyridine groups at its periphery to prevent TiO2 agglomeration through electrostatic repulsion. The success of functionalization and stabilization was corroborated by thermogravimetric analysis, dynamic light‐scattering, and zeta potential measurements. As a complement to this, the formation of layer‐by‐layer assemblies, which are governed by electrostatic interactions, by alternate deposition of functionalized TiO2 nanoparticles and two negatively charged porphyrin derivatives, that is, 5,10,15,20‐(phenoxyacetic acid)‐porphyrin ( 2 ) and 5,10,15,20‐(4‐(2‐ethoxycarbonyl)‐4‐(2‐phenoxyacetamido)heptanedioic acid)‐porphyrin ( 3 ), is documented. To this end, the layer‐by‐layer deposition is monitored by UV/Vis spectroscopy, scanning electron microscopy, ellipsometry, and profilometry techniques. The resulting assemblies are utilized for the construction and testing of novel solar cells. From stable and repeatable photocurrents generated during several “on‐off” cycles of illumination, we derive monochromatic incident photo‐to‐current conversion efficiencies of around 3 %.  相似文献   

9.
Metal‐free controlled ring‐opening polymerization of glycidyl phenyl ether (GPE) was achieved using tetra‐n‐butylammonium fluoride (Bu4NF) as an initiator in the presence of water and ethanol as chain transfer agents (CTAs). Number‐averaged molecular weight of poly(GPE) increased with an increase of [GPE]0/([Bu4NF]0 + [CTA]0) values, showing relatively narrow molecular weight distributions. NMR spectroscopic analysis exhibited a formation of ethoxy groups as well as FCH2 at the initiating polymer chain‐end when ethanol was used as the CTA in the polymerization. These results indicate that Bu4NF acts as a catalyst as well as the initiator for this polymerization system. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Dramatic rate enhancement of reductive elimination of [Ar‐Pd‐C] was observed in the presence of a phosphine/electron‐deficient olefin ligand. Through systematic kinetic investigations of the Negishi coupling of ethyl 2‐iodobenzoate with alkylzinc chlorides (see scheme), the rate constants for reductive elimination of [Ar‐Pd‐C] were determined to be greater than 0.3 s?1, which is about four or five orders of magnitude greater than values reported previously.

  相似文献   


11.
12.
The precise control of monomer sequence and stereochemistry in copolymerization is of much interest and importance for the synthesis of functional polymers, but studies toward this goal have met with only limited success to date. Now, the co‐syndiospecific alternating copolymerization of methoxyphenyl‐ and N,N‐dimethylaminophenyl‐functionalized propylenes with styrene by half‐sandwich rare‐earth catalysts is reported. This reaction efficiently afforded the corresponding functionalized propylene‐alt‐styrene copolymers with a perfect alternating sequence and excellent co‐syndiotacticity (rrrr >99 %), thus constituting the first example of co‐stereospecific alternating copolymerization of polar and non‐polar olefins.  相似文献   

13.
Summary: We report on a new route to synthesize polymeric carbon nanotube‐polyurethane (PU) nanocomposites. Multi‐walled carbon nanotubes (MWNTs) functionalized by chemical modification were incorporated as a crosslinker in prepolymer, which was prepared from a reaction of 4,4′‐methylene bis(phenylisocyanate) and poly(ε‐caprolactone)diol. The reinforcing effect of carbon nanotubes in crosslinked MWNT‐PU nanocomposites was more pronounced as compared to that in conventional MWNT‐PU nanocomposites. The optimum content of chemically modified MWNTs for crosslinking with polyurethane was determined to be approximately 4 wt.‐% in our samples, based on observation of a NCO peak in FT‐IR spectroscopy. MWNT‐crosslinked polyurethane containing 4 wt.‐% modified MWNTs showed the highest modulus and tensile strength among the composites and pure PU. The presence of functionalized MWNTs in the polymeric nanocomposite yielded enhancement in the thermal stability due to crosslinking of the MWNTs with PU.

Possible configuration for MWNT‐PU nanocomposite molecules and FT‐IR spectra of samples obtained during reaction of prepolymer with functionalized MWNTs (second step).  相似文献   


14.
Crosslinked polymer networks are used in a wide variety of applications. To use these materials effectively, a fundamental understanding of their structural evolution and the relationship between material properties and structure is essential. In this article, a novel technique employing “iniferters,” i.e., living radical polymerizations, to photopolymerize these networks is utilized to study the property and structural evolution of these highly desirable materials. Living radical polymerizations are used in this work since this technique avoids the problem of carbon radical trapping encountered while using conventional initiators. Dynamic mechanical measurements are performed on highly crosslinked methacrylate networks to glean information regarding their structural heterogeneity. By performing these measurements on homopolymerized samples at various stages of the reaction and on copolymerized samples of multifunctional methacrylates, the mechanical properties are characterized as a function of double bond conversion and comonomer composition. From such analyses, with respect to both temperature and frequency, quantitative conclusions regarding the structure of the networks are drawn. This effort is aimed at exploiting the living radical polymerizations initiated by p-xylylene bis(N,N-diethyl dithiocarbamate) (XDT), to study the mechanical property evolution and structural heterogeneity of crosslinked polymers which is nearly impossible otherwise. Polymers examined in this study include networks formed by homopolymerization of diethylene glycol dimethacrylate (DEGDMA) and polyethylene glycol 600 dimethacrylate (PEG600DMA) as well as copolymers of DEGDMA and PEG600DMA. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2297–2307, 1997  相似文献   

15.
Photochemical reactions between unfuctionalized olefins and nitroarenes under CO pressure, catalyzed by [Cp*Fe(CO)2]2, form the corresponding allyl amines. The use of mechanistic probes containing 2‐nitrobiphenyl, 2,3‐dimethylbutadiene and pentafluoronitrobenzene suggest that neither aryl nitrene nor nitrosoarene is the active aminating agent in these transformations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
We describe a mild and operationally simple procedure for the oxidation of olefins into ketones. The reaction is catalyzed by the hexadecafluorinated iron–phthalocyanine complex FePcF16 with stoichiometric amounts of triethylsilane as an additive under oxygen atmosphere to give ketones in good to high yields with excellent chemoselectivity and functional group tolerance. Ketone formation proceeds in up to 95 % yield and with 100 % regioselectivity while the corresponding alcohols were observed as side products.  相似文献   

17.
Poly(diallyldimethylammonium chloride) (PDDA) has been employed as a modifying material for the development of new functional materials; then, the functionalized graphene was employed as a support for Pd nanoparticles through a facile method. The structures and morphologies of the as‐synthesized Pd/PDDA–graphene composites were extensively characterized by Raman spectroscopy, XRD, XPS, and TEM. Morphological observation showed that Pd NPs with average diameters of 4.4 nm were evenly deposited over the functionalized graphene sheets. Moreover, the electrochemical experiments indicated that the Pd/PDDA–graphene catalyst showed improved electrocatalytic activity toward alcohol‐oxidation reactions compared to the Pd/graphene and commercial Pd/C systems, as well as previously reported Pd‐based catalysts. This study demonstrates the great potential of PDDA‐functionalized graphene as a support for the development of metal–graphene nanocomposites for important applications in fuel cells.  相似文献   

18.
A palladium‐catalyzed three‐component cascade reaction of 2‐(2‐enynyl)pyridines with nucleophiles and allyl halides has been developed, enabling the synthesis of densely functionalized indolizines in moderate to good yields. The newly developed methodology offers several practical advantages, including operational simplicity, ready availability of starting materials, and mild reaction conditions.  相似文献   

19.
Asymmetric reductive Heck reaction of aryl halides is realized in high stereoselectivity. Hydrogen‐bond donors, trialkylammonium salts in a glycol solvent, were used to promote halide dissociation from neutral arylpalladium complexes to access cationic, stereoselective pathways.  相似文献   

20.
The two new fluorescent ligands RosCat1 and RosCat2 contain catechol receptors connected to rosamine platforms through an amide linkage and were synthesized by using microwave‐assisted coupling reactions of carboxyl‐ or amine‐substituted rosamines with the corresponding catechol units and subsequent deprotection. RosCat1 possesses a reverse amide, whereas RosCat2 has the usual oriented amide bond (HNCO vs. CONH, respectively). The ligands were characterized by means of NMR spectroscopy, mass‐spectrometry, and DFT calculations and X‐ray crystallography studies for RosCat1 . The influence of the amide linkage on the photophysical properties of the fluorescent ligands was assessed in different solvents and showed a higher fluorescence quantum yield for RosCat1 . The coordination chemistry of these ligands with a FeIII center has been rationalized by mass‐spectrometric analysis and semiempirical calculations. Octahedral FeIII complexes were obtained by the chelation of three RosCat1 or RosCat2 ligands. Interestingly, the unconventional amide connectivity in RosCat1 imposes the formation of an eight‐membered ring on the chelate complex through a “salicylate‐type” mode of coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号