首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although tremendous efforts have been devoted to understanding the origin of boosted charge storage on heteroatom-doped carbons, none of the present studies has shown a whole landscape. Herein, by both experimental evidence and theoretical simulation, it is demonstrated that heteroatom doping not only results in a broadened operating voltage, but also successfully promotes the specific capacitance in aqueous supercapacitors. In particular, the electrolyte cations adsorbed on heteroatom-doped carbon can effectively inhibit hydrogen evolution reaction, a key step of water decomposition during the charging process, which broadens the voltage window of aqueous electrolytes even beyond the thermodynamic limit of water (1.23 V). Furthermore, the reduced adsorption energy of heteroatom-doped carbon consequently leads to more stored cations on the heteroatom-doped carbon surface, thus yielding a boosted charge storage performance.  相似文献   

2.
The voltage of carbon‐based aqueous supercapacitors is limited by the water splitting reaction occurring in one electrode, generally resulting in the promising but unused potential range of the other electrode. Exploiting this unused potential range provides the possibility for further boosting their energy density. An efficient surface charge control strategy was developed to remarkably enhance the energy density of multiscale porous carbon (MSPC) based aqueous symmetric supercapacitors (SSCs) by controllably tuning the operating potential range of MSPC electrodes. The operating voltage of the SSCs with neutral electrolyte was significantly expanded from 1.4 V to 1.8 V after simple adjustment, enabling the energy density of the optimized SSCs reached twice as much as the original. Such a facile strategy was also demonstrated for the aqueous SSCs with acidic and alkaline electrolytes, and is believed to bring insight in the design of aqueous supercapacitors.  相似文献   

3.
4.
Tremendous development in the field of portable electronics and hybrid electric vehicles has led to urgent and increasing demand in the field of high‐energy storage devices. In recent years, many research efforts have been made for the development of more efficient energy‐storage devices such as supercapacitors, batteries, and fuel cells. In particular, supercapacitors have great potential to meet the demands of both high energy density and power density in many advanced technologies. For the last half decade, graphene has attracted intense research interest for electrical double‐layer capacitor (EDLC) applications. The unique electronic, thermal, mechanical, and chemical characteristics of graphene, along with the intrinsic benefits of a carbon material, make it a promising candidate for supercapacitor applications. This Review focuses on recent research developments in graphene‐based supercapacitors, including doped graphene, activated graphene, graphene/metal oxide composites, graphene/polymer composites, and graphene‐based asymmetric supercapacitors. The challenges and prospects of graphene‐based supercapacitors are also discussed.  相似文献   

5.
This research presents a simple and efficient method to synthesize porous nitrogen‐doped carbon microspheres (PNCM) by the carbonization of microporous poly(terephthalaldehyde‐pyrrole) organic frameworks (PtpOF). The common KOH activation process is used to tune the porous texture of the PNCM and produce an activated‐PNCM (A‐PNCM). The PNCM and A‐PNCM with specific surface area of 921 and 1303 m2 g?1, respectively, are demonstrated as promising candidates for EDLCs. At a current density of 0.5 A g?1, the specific capacitances of the PNCM and A‐PNCM are 248 and 282 F g?1, respectively. At the relatively high current density of 20 A g?1, the capacitance remaining is 95 and 154 F g?1, respectively. Capacity retention of the A‐PNCM is more than 92 % after 10 000 charge/discharge cycles at a current density of 2 A g?1.  相似文献   

6.
High‐performance electrical double‐layer capacitors (EDLCs) require carbon electrode materials with high specific surface area, short ion‐diffusion pathways, and outstanding electrical conductivity. Herein, a general approach combing the molten‐salt method and chemical activation to prepare N‐doped carbon nanosheets with high surface area (654 m2 g?1) and adjustable porous structure is presented. Owing to their structural features, the N‐doped carbon nanosheets exhibited superior capacitive performance, demonstrated by a maximum capacitance of 243 F g?1 (area‐normalized capacitance up to 37 μF cm?2) at a current density of 0.5 A g?1 in aqueous electrolyte, high rate capability (179 F g?1 at 20 A g?1), and excellent cycle stability. This method provides a new route to prepare porous and heteroatom‐doped carbon nanosheets for high‐performance EDLCs, which could also be extended to other polymer precursors and even waste biomass.  相似文献   

7.
8.
有序中孔炭的电化学储氢性能   总被引:1,自引:0,他引:1  
将蔗糖、聚环氧乙烯-聚环氧丙烯-聚环氧乙烯三嵌段共聚物和硅源构成的复合物进行预炭化、炭化和除硅处理合成出有序中孔炭, 采用XRD、TEM、HRTEM和N2吸脱附等手段对其进行表征, 并将有序中孔炭制成电极开展恒流充放电储氢性能研究. 结果显示, 具有较高比表面积(720 m2·g-1)和孔容(0.86 cm3·g-1)的有序中孔炭材料的电化学储氢容量为70.1 mAh·g-1, 高于具有相对较低比表面积(610 m2·g-1)和孔容(0.66 cm3·g-1)的有序中孔炭储氢容量(64.1 mAh·g-1). 通过与单壁碳纳米管电极(25.9 mAh·g-1)的对比, 表明有序中孔炭具有良好的电化学储氢性能和更高的电化学活性.  相似文献   

9.
Nitrogen‐doped species (NDs) are theoretically accepted as a determinant of the catalytic activity of metal‐free N‐doped carbon (NC) catalysts for oxygen reduction reaction (ORR). However, direct relationships between ND type and ORR activity have been difficult to extract because the complexity of carbon matrix impairs efforts to expose specific NDs. Herein, we demonstrate the fabrication of a 3D hierarchically porous NC catalyst with micro‐, meso‐, and macroporosity in one structure, in which sufficient exposure and availability of inner‐pore catalytic sites can be achieved due to its super‐high surface area (2191 cm2 g?1) and interconnected pore system. More importantly, in‐situ formation of graphitic‐N species (GNs) on the surface of NC stimulated by KOH activation enables us to experimentally reveal the catalytic nature of GNs for ORR, which is of great significance for the design and development of advanced metal‐free NC electrocatalysts.  相似文献   

10.
11.
Single‐atom catalysts have attracted much attention. Reported herein is that regulating charge transfer of lattice oxygen atoms in serial single‐atom‐doped titania enables tunable hydrogen evolution reaction (HER) activity. First‐principles calculations disclose that the activity of lattice oxygen for the HER can be regularly promoted by substituting its nearest metal atom, and doping‐induced charge transfer plays an essential role. Besides, the realm of the charge transfer of the active site can be enlarged to the second nearest atom by creating oxygen vacancies, resulting in further optimization for the HER. Various single‐atom‐doped titania nanosheets were fabricated to validate the proposed model. Taking advantage of the localized charge transfer to the lattice atom is demonstrated to be feasible for realizing precise regulation of the electronic structures and thus catalytic activity of the nanosheets.  相似文献   

12.
13.
The oxygen reduction reaction (ORR) is of high industrial importance. There is a large body of literature showing that metal‐based catalytic nanoparticles (e.g. Co, Mn, Fe or hybrid Mn/Co‐based nanoparticles) supported on graphene act as efficient catalysts for the ORR. A significant research effort is also directed to the so‐called “metal‐free” oxygen reduction reaction on heteroatom‐doped graphene surfaces. While such studies of the ORR on nonmetallic heteroatom‐doped graphene are advertised as “metal‐free” there is typically no sufficient effort to characterize the doped materials to verify that they are indeed free of any trace metal. Here we argue that the claimed “metal‐free” electrocatalysis of the oxygen reduction reaction on heteroatom‐doped graphene is caused by metallic impurities present within the graphene materials.  相似文献   

14.
The cathodic reactions in Li–S batteries can be divided into two steps. Firstly, elemental sulfur is transformed into long‐chain polysulfides (S8?Li2S4), which are highly soluble in the electrolyte. Next, long‐chain polysulfides undergo nucleation reaction and convert into solid‐state Li2S2 and Li2S (Li2S4?Li2S) by slow processes. As a result, the second‐step of the electrochemical reaction hinders the high‐rate application of Li–S batteries. In this report, the kinetics of the sulfur/long‐chain‐polysulfide redox couple (theoretical capacity=419 mA h g?1) are experimentally demonstrated to be very fast in the Li–S system. A Li–S cell with a blended carbon interlayer retains excellent cycle stability and possesses a high percentage of active material utilization over 250 cycles at high C rates. The meso‐/micropores in the interlayer are responsible for accommodating the shuttling polysulfides and offering sufficient electrolyte accessibility. Therefore, utilizing the sulfur/long‐chain polysulfide redox couple with an efficient interlayer configuration in Li–S batteries may be a promising choice for high‐power applications.  相似文献   

15.
Photoelectrochemical (PEC) biosensing with semiconductor quantum dots (QDs) has received great attention because it integrates the advantages of both photo‐excitation and electrochemical detection. During the photon‐to‐electricity conversion in PEC processes, electron–hole (charge) separation competes with electron–hole recombination, and the net effect essentially determines the performance of PEC biosensors. Herein, we propose a new approach for slowing down electron–hole recombination to increase charge separation efficiency for PEC biosensor development. Through doping with Mn2+, a pair of d bands (4T1 and 6A1) is inserted between the conduction and valence bands of CdS QDs, which alters the electron–hole separation and recombination dynamics, allowing the generation of long‐lived charge carriers with ms‐scale lifetime that decay about 104–105‐fold more slowly than in the case of undoped QDs. Photocurrent tests indicated that Mn2+ doping resulted in an approximately 80 % increase in photocurrent generation compared with undoped CdS QDs. For application, the Mn‐doped CdS QDs were coated on the surface of a glassy carbon electrode and functionalized with a cell surface carbohydrate‐specific ligand (3‐aminophenylboronic acid). In this way, a sensitive cytosensor for K562 leukemia cells was constructed. Moreover, the sugar‐specific binding property of 3‐aminophenylboronic acid allowed the electrode to serve as a switch for the capture and release of cells. This has been further explored with a view to developing a reusable PEC cytosensing platform.  相似文献   

16.
A azine‐linked covalent organic framework, COF‐JLU2, was designed and synthesized by condensation of hydrazine hydrate and 1,3,5‐triformylphloroglucinol under solvothermal conditions for the first time. The new covalent organic framework material combines permanent micropores, high crystallinity, good thermal and chemical stability, and abundant heteroatom activated sites in the skeleton. COF‐JLU2 possesses a moderate BET surface area of over 410 m2 g?1 with a pore volume of 0.56 cm3 g?1. Specifically, COF‐JLU2 displays remarkable carbon dioxide uptake (up to 217 mg g?1) and methane uptake (38 mg g?1) at 273 K and 1 bar, as well as high CO2/N2 (77) selectivity. Furthermore, we further highlight that it exhibits a higher hydrogen storage capacity (16 mg g?1) than those of reported COFs at 77 K and 1 bar.  相似文献   

17.
Heteroatom‐doped porous carbon derived from biomass have recently received increasing attention due to their unique properties such as high electrical conductivity, large specific surface area, high porosity, and easy availability, which are appealing materials for versatile applications in catalysis, energy, separation and adsorption, and life sciences as well. On the basis of our previous work in this field, we summarized in this account our recent progress on design, synthesis of metal (e. g., Pd, Co) nanoparticles supported heteroatom‐doped hierarchical porous carbon material derived from bamboo shoots and their applications for important organic transformations, including chemoselective semihydrogenation of alkynes, hydrosilylation of alkynes, cascade synthesis of benzofurans from terminal alkynes and iodophenols, selective hydrogenation of functionalized nitroarenes to form anilines, imines, and formamides. Finally, the current state and future challenges in this field are discussed. We hope this account could shed light on the rational design of novel non‐noble metal based heterogeneous catalysts derived from biomass for efficient and sustainable organic transformations.  相似文献   

18.
A library of symmetrical linear oligothiophene was prepared employing decarboxylative cross‐coupling reaction as the key transformation. Thiophene potassium carboxylate salts were used as cross‐coupling partners without the need of co‐catalyst, base, or additives. This method demonstrates complete chemoselectivity and is a comprehensive greener approach compared to the existing methods. The modularity of this approach is demonstrated with the preparation of discreet oligothiophenes with up to 10 thiophene repeat units. Symmetrical oligothiophenes are prototypical organic semiconductors where their molecular electrical doping as a function of the chain length can be assessed spectroscopically. An oligothiophene critical length for integer charge transfer was observed to be 10 thiophene units, highlighting the potential use of discrete oligothiophenes as doped conduction or injection layers in organic electronics applications.  相似文献   

19.
A key challenge of photoregulated living radical polymerization is developing efficient and robust photocatalysts. Now carbon dots (CDs) have been exploited for the first time as metal‐free photocatalysts for visible‐light‐regulated reversible addition–fragmentation chain‐transfer (RAFT) polymerization. Screening of diverse heteroatom‐doped CDs suggested that the P‐ and S‐doped CDs were effective photocatalysts for RAFT polymerization under mild visible light following a photoinduced electron transfer (PET) involved oxidative quenching mechanism. PET‐RAFT polymerization of various monomers with temporal control, narrow dispersity (?≈1.04), and chain‐end fidelity was achieved. Besides, it was demonstrated that the CD‐catalyzed PET‐RAFT polymerization was effectively performed under natural solar irradiation.  相似文献   

20.
Rational design and synthesis of advanced anode materials are extremely important for high‐performance lithium‐ion and sodium‐ion batteries. Herein, a simple one‐step hydrothermal method is developed for fabrication of N‐C@MoS2 microspheres with the help of polyurethane as carbon and nitrogen sources. The MoS2 microspheres are composed of MoS2 nanoflakes, which are wrapped by an N‐doped carbon layer. Owing to its unique structural features, the N‐C@MoS2 microspheres exhibit greatly enhanced lithium‐ and sodium‐storage performances including a high specific capacity, high rate capability, and excellent capacity retention. Additionally, the developed polyurethane‐assisted hydrothermal method could be useful for the construction of many other high‐capacity metal oxide/sulfide composite electrode materials for energy storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号