首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inspired by recent molecular dynamic simulations of nanocrystalline solids, a generalized self-consistent polycrystal model is proposed to study the transition of yield strength of polycrystalline metals as the grain size decreases from the traditional coarse grain to the nanometer scale. These atomic simulations revealed that a significant portion of atoms resides in the grain boundaries and the plastic flow of the grain-boundary region is responsible for the unique characteristics displayed by such materials. The proposed model takes each oriented grain and its immediate grain boundary to form a pair, which in turn is embedded in the infinite effective medium with a property representing the orientational average of all these pairs. We make use of the linear comparison composite to determine the nonlinear behavior of the nanocrystalline polycrystal through the concept of secant moduli. To this end an auxiliary problem of Christensen and Lo (J. Mech. Phys. Solids 27 (1979) 315) superimposed on the eigenstrain field of Luo and Weng (Mech. Mater. 6 (1987) 347) is first considered, and then the nonlinear elastoplastic polycrystal problem is addressed. The plastic flow of each grain is calculated from its crystallographic slips, but the plastic behavior of the grain-boundary phase is modeled as that of an amorphous material. The calculated yield stress for Cu is found to follow the classic Hall-Petch relation initially, but as the gain size decreases it begins to depart from it. The yield strength eventually attains a maximum at a critical grain size and then the Hall-Petch slope turns negative in the nano-range. It is also found that, when the Hall-Petch relation is observed, the plastic behavior of the polycrystal is governed by crystallographic slips in the grains, but when the slope is negative it is governed by the grain boundaries. During the transition both grains and grain boundaries contribute competitively.  相似文献   

2.
The determination of an effective property in composite materials necessitates the knowledge of some averaged field quantities in the constituents (like the average heat intensity or average strain) of a composite sample, which is subjected to homogeneous boundary conditions. In the generalized self-consistent scheme (GSCS) which is today a classical micromechanics model suited for the determination of the effective properties of matrix-based composites, those average quantities are estimated by using an auxiliary configuration in which a particulate phase is first surrounded by some matrix material and then embedded in the effective medium. In the present study, we revisit the GSCS both for two- and multi-phase matrix-based composites containing spherical particles, and clarify aspects related to the volume fractions of the particle core and matrix shell within the composite element which is embedded in the effective medium. The contribution of this study is believed to be mainly on the conceptual side and resides in a new formulation of the method in which the embedding volume fractions are determined in the course of the analysis by means of some fundamental relations on the averaged fields. The study is carried out in thermal conduction and elasticity and contains new results on the effective shear modulus of multi-phase composites.  相似文献   

3.
This paper firstly works out basic differential equations of piezoelectric materials expressed in terms of potential functions, which are introduced in the very beginning. These equations are primarily solved through Laplace transformation, semi-infinite Fourier sine transformation and cosine transformation. Secondly, dual equations of dynamic cracks problem in 2D piezoelectric materials are established with the help of Fourier reverse transformation and the introduction of boundary conditions. Finally, according to the character of the Bessel function and by making full use of the Abel integral equation and its reverse transform, the dual equations are changed into the second type of Fredholm integral equations. The investigation indicates that the study approach taken is feasible and has potential to be an effective method to do research on issues of this kind.  相似文献   

4.
针对自洽强度方法存在的冲击加载-再加载的难题,提出了一种采用较高硬度材料为支撑制作组合飞片的简便方法。利用该方法获得了铝、锡和锆基金属玻璃较理想的冲击加载-再加载粒子速度剖面,验证了该方法的有效性。由本文获得的冲击加载-再加载粒子速度剖面,并根据自洽方法,计算得到了铝、锡和锆基金属玻璃再加载过程剪应力变化数据。进一步分析表明,在本文涉及的压力范围内,仅由冲击加载-卸载实验得到的铝、锡和锆基金属玻璃屈服强度将比实际结果降低20%~50%。因此,在采用自洽方法计算高压强度时,冲击加载-再加载数据不可或缺。  相似文献   

5.
6.
Introduction Inengineeringtechnology,thegradedmultiwebstructureofheterogeneousmaterials whichisappliedinaerofoilstructureandautomobilelightweightstructuresubstitutethe integralskinwebstructureforthetraditionalskinstiffenedstructure.Thismultiwebstructure i…  相似文献   

7.
This paper is concerned with the multiscale simulation of plastic deformation of metallic specimens using physically-based models that take into account their polycrystalline microstructure and the directionality of deformation mechanisms acting at single-crystal level. A polycrystal model based on self-consistent homogenization of single-crystal viscoplastic behavior is used to provide a texture-sensitive constitutive response of each material point, within a boundary problem solved with finite elements (FE) at the macroscale. The resulting constitutive behavior is that of an elasto-viscoplastic material, implemented in the implicit FE code ABAQUS. The widely-used viscoplastic selfconsistent (VPSC) formulation for polycrystal deformation has been implemented inside a user-defined material (UMAT) subroutine, providing the relationship between stress and plastic strain-rate response. Each integration point of the FE model is considered as a polycrystal with a given initial texture that evolves with deformation. The viscoplastic compliance tensor computed internally in the polycrystal model is in turn used for the minimization of a suitable-designed residual, as well as in the construction of the elasto-viscoplastic tangent stiffness matrix required by the implicit FE scheme.Uniaxial tension and simple shear of an FCC polycrystal have been used to benchmark the accuracy of the proposed implicit scheme and the correct treatment of rotations for prediction of texture evolution. In addition, two applications are presented to illustrate the potential of the multiscale strategy: a simulation of rolling of an FCC plate, in which the model predicts the development of different textures through the thickness of the plate; and the deformation under 4-point bending of textured HCP bars, in which the model captures the dimensional changes associated with different orientations of the dominant texture component with respect to the bending plane.  相似文献   

8.
The behaviors of an interface crack between dissimilar orthotropic elastic halfplanes subjected to uniform tension was reworked by use of the Schmidt method. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, of which the unknown variables are the jumps of the displacements across the crack surfaces. Numerical examples are provided for the stress intensity factors of the cracks. Contrary to the previous solution of the interface crack, it is found that the stress singularity of the present interface crack solution is of the same nature as that for the ordinary crack in homogeneous materials. When the materials from the two half planes are the same, an exact solution can be otained.  相似文献   

9.
横观各向同性材料三维裂纹问题的数值分析   总被引:1,自引:0,他引:1  
严格从三维横观各向同性材料弹性空间问题的Green函数出发,采用Hadamard有限部积分概念,导出了三维状态下单位位移间断(位错)集度的基本解.在此基础上,将三维任意形状的片状裂纹问题归结为求解-组以未知位移间断表示的超奇异积分方程;并给出了边界元离散形式.对方程中出现的超奇异积分,采用了Had-alnard定义的有限部积分来处理.论文最后给出了若干典型片状裂纹问题的数值算例,数值结果表明了本文方法是非常有效的.  相似文献   

10.
A necessary and sufficient condition for the correct formulation of boundary integral equations of harmonic functions is established in the present paper. A super-determined problem of harmonic functions is proposed for the first time. Then a necessary and sufficient condition for the existence of solution of the super-determined problem is proved. At the same time, it is a necessary and sufficient condition for the correct formulation of boundary integral equations with direct unknown quantities. A relation between boundary integral equations and variational principles is discovered for the first time. And a one-to-one correspondence between boundary integral equations with direct and indirect unknown quantities is indicated. The concept and route of the present paper can be applied to other boundary value problems possessing variational principles.  相似文献   

11.
IntroductionItiswell_knownthatpiezoelectricmaterialsproduceanelectricfieldwhendeformedandundergodeformationwhensubjectedtoanelectricfield .Thecouplingnatureofpiezoelectricmaterialshasattractedwideapplicationsinelectric_mechanicalandelectricdevices,suc…  相似文献   

12.
针对一维情况下随机排列非均质颗粒材料组成的结构,推导了该结构的刚度系数的解析表达式。颗粒材料由随机算法根据颗粒尺寸分布和结构尺寸生成。通过引入相对破碎参数,将颗粒破碎现象定量体现在颗粒尺寸分布函数的变化上,从而使本文提出的解析表达式能够计及颗粒破碎。数值结果说明本文提出表达式的有效性,并体现了颗粒破碎对颗粒结构刚度系数的影响。  相似文献   

13.
将平面弹性力学确定性的充分必要的边界积分方程推广到含材料常数随机的不确定问题中去,给出了位移的均值以及偏差的充分必要的边界积分方程。数值计算结果表明,和确定性的积分方程一样,习用的随机边界积分方程在退化尺度附近,无论是均值还是偏差都存在巨大的误差,而充要的随机边界积分方程则始终保持良好的精度  相似文献   

14.
The constitutive behavior of porous materials (including the yield loci, the void growth rate, the macro stress-strain relation and the strain to localization instability) is examined based on the lower bound approach proposed by the present authors. These results are then compared with the experimental and the finite element results as well as those predicted by Gurson's equations. Emphasis is placed on approaching the real behavior from the upper and the lower bound analysis. Calculation is also made on the influence of void nucleation on the critical strain to instability and a modified strain-controlled nucleation criterion is proposed. Finally the instability and fracture of AISI4340 steel in plane strain tension is examined and comparison is made between theoretical and experimental results.  相似文献   

15.
The boundary element method based on a boundary integral equation has been very successful in computational mechanics. Atluri et al. [4] recently developed a new meshless method using the local boundary integral equations. It eliminates the tedious step of mesh generation and thus greatly simplifies the numerical computation process. This paper shows the equivalence between the local boundary integral equation and the mean value theorem in the theory of elasticity. In addition, it gives new proofs for the mean value theorem of elasticity and its converse based on the concept of a companion solution. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Recent work has suggested that the heterogeneous distribution of mechanical properties in natural and synthetic materials induces a toughening mechanism that leads to a more robust structural response in the presence of cracks, defects or other types of flaws. Motivated by this, we model an elastic solid with a Young′s modulus distribution described by a Gaussian process. We study the pristine system using both a continuum and a discrete model to establish a link between the microscale and the macroscale in the presence of disorder. Furthermore, we analyze a flawed discrete particle system and investigate the influence of heterogeneity on the fracture mechanical properties of the solid. We vary the variability and correlation length of the Gaussian process, thereby gaining fundamental insights into the effect of heterogeneity and the essential length scales of heterogeneity critical to enhanced fracture properties. As previously shown for composites with complex hierarchical architectures, we find that materials with disordered elastic fields toughen by a ‘distribution-of-weakness’ mechanism inducing crack arrest and stress delocalization. In our systems, the toughness modulus can increase by up to 30% due to an increase in variability in the elastic field. Our work presents a foundation for stochastic modeling in a particle-based micromechanical environment that can find broad applications within natural and synthetic materials.  相似文献   

17.
采用格林函数法,导出了U型波纹管圆环壳部分和截头扁锥壳部分的非线性的积分方程,其中的四个未知参数由圆环壳和截头扁锥壳的连接条件确定,联合应用梯度法和积分方程迭代法建立了U型波纹管大挠度分析的迭代算法,开发了相应的程序系统,数值结果表明,本文方法具有较高的精度,压缩角对峰值应力和刚度影响十分显著,应用作为波纹管设计的重要参数。  相似文献   

18.
In this paper the anti-plane problem for an interface crack between two dissimilar magneto-electro-elastic plates subjected to anti-plane mechanical and in-plane magneto-electrical loads is investigated. The interface crack is assumed to be either magneto-electrically impermeable or permeable, and the position of the interface crack is arbitrary. The finite Fourier transform method is employed to reduce the mixed boundary-value problem to triple trigonometric series equations. The dislocation density functions and proper replacement of the variables are introduced to reduce these series equations to a standard Cauchy singular integral equation of the first kind. The resulting integral equation together with the corresponding single-valued condition is approximated as a system of linear algebra equations which can be easily solved. Field intensity factors and energy release rates are determined numerically and discussed in detail. Numerical results show the effects of crack configuration and loading combination parameters on the fracture behaviors of crack tips according to energy release rate criterion. The study of this problem is expected to have applications to the investigation of dynamic fracture properties of magneto-electro-elastic materials with cracks.  相似文献   

19.
本文用初参数积分方程方法,对悬链线波纹壳在均布压力作用下的应力和位移进行了分析,并给出了一个算例。  相似文献   

20.
远方  刁可 《计算力学学报》2010,27(2):375-378
以自动元胞机CA(Cellular Automata)理论为基础,提出了一种CA计算模型,模拟混凝土、岩石等非均匀脆性材料的开裂过程,研究分析材料的变形性质和力学性能。文中给出了空间随机杆件方向余弦常量,推导了等效杆件截面面积计算公式,并通过数值试验证明了方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号