首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
张焕萍  李彪  陈勇  黄菲 《中国物理 B》2010,19(2):20201-020201
By means of the reductive perturbation method, three types of generalized (2+1)-dimensional Kadomtsev--Petviashvili (KP) equations are derived from the baroclinic potential vorticity (BPV) equation, including the modified KP (mKP) equation, standard KP equation and cylindrical KP (cKP) equation. Then some solutions of generalized cKP and KP equations with certain conditions are given directly and a relationship between the generalized mKP equation and the mKP equation is established by the symmetry group direct method proposed by Lou et al. From the relationship and the solutions of the mKP equation, some solutions of the generalized mKP equation can be obtained. Furthermore, some approximate solutions of the baroclinic potential vorticity equation are derived from three types of generalized KP equations.  相似文献   

2.
The bilinear equation of the genera/nonlinear Schrodinger equation with derivative (GDNLSE) and the N-soliton solutions are obtained through the dependent variable transformation and the Hirota method, respectively. The bilinear equation of the nonlinear Schrodinger equation with derivative (DNLSE) and its multisoliton solutions are given by reduction.  相似文献   

3.
Recently,a new decomposition of the (2 1)-dimensional Kadomtsev-Petviashvili(KP) equation to a (1 1)-dimensional Broer-Kaup (BK) equation and a (1 1)-dimensional high-order BK equation was presented by Lou and Hu.In our paper,a unified Darboux transformation for both the BK equation and high-order BK equation is derived with the help of a gauge transformation of their spectral problems.As application,new explicit soliton-like solutions with five arbitrary parameters for the BK equation,high-order BK equation and KP equation are obtained.  相似文献   

4.
The Camassa-Holm equation, Degasperis-Procesi equation and Novikov equation are the three typical integrable evolution equations admitting peaked solitons. In this paper, a generalized Novikov equation with cubic and quadratic nonlinearities is studied, which is regarded as a generalization of these three well-known studied equations. It is shown that this equation admits single peaked traveling wave solutions, periodic peaked traveling wave solutions, and multi-peaked traveling wave solutions.  相似文献   

5.
We study one-and two-soliton solutions for the Cahn–Allen(CA) equation and the Brethorton equation. The CA equation has broad spectrum of applications especially in anti-phase boundary motion and it is used in phase-field models.While the Brethorton equation is a model for dispersive wave systems, it is used to find the resonant nonlinear interaction among three linear modes. We use the Hirota bilinear method to obtain one-and two-soliton solutions to the CA equation and the Brethorton equation.  相似文献   

6.
In the paper two kinds of solutions are derived for the complex Korteweg-de Vries equation, includ- ing blow-up solutions and non-singular solutions. We derive blow-up solutions from known 1-soliton solution and a double-pole solution. There is a complex Miura transformation between the complex Korteweg-de Vries equation and a modified Kortcweg-de Vries equation. Using the transformation, solitons, breathers and rational solutions to the com- plex Korteweg-de Vries equation are obtained from those of the modified Korteweg-de Vries equation. Dynamics of the obtained solutions are illustrated.  相似文献   

7.
张荣培  蔚喜军  赵国忠 《中国物理 B》2013,22(3):30210-030210
In this paper, we present the local discontinuous Galerkin method for solving Burgers’ equation and the modified Burgers’ equation. We describe the algorithm formulation and practical implementation of the local discontinuous Galerkin method in detail. The method is applied to the solution of the one-dimensional viscous Burgers’ equation and two forms of the modified Burgers’ equation. The numerical results indicate that the method is very accurate and efficient.  相似文献   

8.
In this paper,we present the local discontinuous Galerkin method for solving Burgers’ equation and the modified Burgers’ equation.We describe the algorithm formulation and practical implementation of the local discontinuous Galerkin method in detail.The method is applied to the solution of the one-dimensional viscous Burgers’ equation and two forms of the modified Burgers’ equation.The numerical results indicate that the method is very accurate and efficient.  相似文献   

9.
A generalized continuity equation extending the ordinary continuity equation is found using quanternions to show it is compatible with Dirac, Schrǒdinger, Klein-Gordon and diffusion equations. This generalized equation is Lorentz invariant. The transport properties of electrons are found to be governed by the Schr6dinger-like equation and not by the diffusion equation.  相似文献   

10.
We give an equivalent construction of the infinitesimal time translation operator for partial differential evolution equation in the algebraic dynamics algorithm proposed by Shun-Jin Wang and his students. Our construction involves only simple partial differentials and avoids the derivative terms of δ function which appear in the course of computation by means of Wang-Zhang operator. We prove Wang’s equivalent theorem which says that our construction and Wang-Zhang’s are equivalent. We use our construction to deal with several typical equations such as nonlinear advection equation, Burgers equation, nonlinear Schrodinger equation, KdV equation and sine-Gordon equation, and obtain at least second order approximate solutions to them. These equations include the cases of real and complex field variables and the cases of the first and the second order time derivatives.  相似文献   

11.
In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov--Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.  相似文献   

12.
In this paper the author presents an overview on his own research works. More than ten years ago, we proposed a new fundamental equation of nonequilibrium statistical physics in place of the present Liouville equation. That is the stochastic velocity type’s Langevin equation in 6N dimensional phase space or its equivalent Liouville diffusion equation. This equation is time-reversed asymmetrical. It shows that the form of motion of particles in statistical thermodynamic systems has the drift-diffusion duality, and the law of motion of statistical thermodynamics is expressed by a superposition of both the law of dynamics and the stochastic velocity and possesses both determinism and probability. Hence it is different from the law of motion of particles in dynamical systems. The stochastic diffusion motion of the particles is the microscopic origin of macroscopic irreversibility. Starting from this fundamental equation the BBGKY diffusion equation hierarchy, the Boltzmann collision diffusion equation, the hydrodynamic equations such as the mass drift-diffusion equation, the Navier-Stokes equation and the thermal conductivity equation have been derived and presented here. What is more important, we first constructed a nonlinear evolution equation of nonequilibrium entropy density in 6N, 6 and 3 dimensional phase space, predicted the existence of entropy diffusion. This entropy evolution equation plays a leading role in nonequilibrium entropy theory, it reveals that the time rate of change of nonequilibrium entropy density originates together from its drift, diffusion and production in space. From this evolution equation, we presented a formula for entropy production rate (i.e. the law of entropy increase) in 6N and 6 dimensional phase space, proved that internal attractive force in nonequilibrium system can result in entropy decrease while internal repulsive force leads to another entropy increase, and derived a common expression for this entropy decrease rate or another entropy increase rate, obtained a theoretical expression for unifying thermodynamic degradation and self-organizing evolution, and revealed that the entropy diffusion mechanism caused the system to approach to equilibrium. As application, we used these entropy formulas in calculating and discussing some actual physical topics in the nonequilibrium and stationary states. All these derivations and results are unified and rigorous from the new fundamental equation without adding any extra new assumption.  相似文献   

13.
Three(2+1)-dimensional equations–KP equation, cylindrical KP equation and spherical KP equation, have been reduced to the same Kd V equation by different transformation of variables respectively. Since the single solitary wave solution and 2-solitary wave solution of the Kd V equation have been known already, substituting the solutions of the Kd V equation into the corresponding transformation of variables respectively, the single and 2-solitary wave solutions of the three(2+1)-dimensional equations can be obtained successfully.  相似文献   

14.
With the help of the homogeneous balance method, the Jacobi elliptic expansion method and the auxiliary equation method, the first elliptic function equation is used to obtain the Jacobi doubly periodic wave solutions of the (2+1)-dimensional B-type Kadomtsev-Petviashvili (BKP) equation and the generalized Klein-Gordon equation. The method is also valid for other (1+1)-dimensional and higher dimensional systems.  相似文献   

15.
何国亮  耿献国 《中国物理 B》2012,21(7):70205-070205
Based on the modified Sawada-Kotera equation, we introduce a 3 × 3 matrix spectral problem with two potentials and derive a hierarchy of new nonlinear evolution equations. The second member in the hierarchy is a generalization of the modified Sawada-Kotera equation, by which a Lax pair of the modified Sawada-Kotera equation is obtained. With the help of the Miura transformation, explicit solutions of the Sawada-Kotera equation, the Kaup-Kupershmidt equation, and the modified Sawada-Kotera equation are given. Moreover, infinite sequences of conserved quantities of the first two nonlinear evolution equations in the hierarchy and the modified Sawada-Kotera equation are constructed with the aid of their Lax pairs.  相似文献   

16.
In this paper, an explicit N-fold Darboux transformation with multi-parameters for both a (1+1)- dimensional Broer-Kaup (BK) equation and a (1+1)-dimensional high-order Broer-Kaup equation is constructed with the help of a gauge transformation of their spectral problems. By using the Darboux transformation and new basic solutions of the spectral problems, 2N-soliton solutions of the BK equation, the high-order BK equation, and the Kadomtsev-Petviashvili (KP) equation are obtained.  相似文献   

17.
A (3+1)-dimensional Gross-Pitaevskii (GP) equation with time variable coefficients is considered, and is transformed into a standard nonlinear Schrodinger (NLS) equation. Exact solutions of the (3+1)D GP equation are constructed via those of the NLS equation. By applying specific time-modulated nonlinearities, dispersions, and potentials, the dynamics of the solutions can be controlled. Solitary and periodic wave solutions with snaking and breathing behavior are reported.  相似文献   

18.
In this paper, we apply homotopy analysis method to solve discrete mKdV equation and successfully obtain the bell-shaped solitary solution to mKdV equation. Comparison between our solution and the exact solution shows that homotopy analysis method is effective and validity in solving hybrid nonlinear problems, including solitary solution of difference-differential equation.  相似文献   

19.
In this paper, we present a new method to obtain the Lie symmetries and conserved quantities of the discrete wave equation with the Ablowitz-Ladik-Lattice equations. Firstly, the wave equation is transformed into a simple difference equation with the Ablowitz-Ladik-Lattice method. Secondly, according to the invariance of the discrete wave equation and the Ablowitz-Ladik-Lattice equations under infinitesimal transformation of dependent and independent variables, we derive the discrete determining equation and the discrete restricted equations. Thirdly, a series of the discrete analogs of conserved quantities, the discrete analogs of Lie groups, and the characteristic equations are obtained for the wave equation. Finally, we study a model of a biological macromolecule chain of mechanical behaviors, the Lie symmetry theory of discrete wave equation with the Ablowitz-Ladik-Lattice method is verified.  相似文献   

20.
In this paper, dependent and independent variable transformations are introduced to solve the negative mKdV equation systematically by using the knowledge of elliptic equation and Jacobian elliptic functions. It is shown that different kinds of solutions can be obtained to the negative mKdV equation, including breather lattice solution and periodic wave solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号