首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper studies the dynamics and libration suppression of a tethered system with a moving climber in circular orbits. The tethered system is modeled by a two-piece dumbbell model that consists of one main satellite, one climber and one end-body connected by two straight, massless and inextensible tethers. A new tension control strategy to suppress the libration of the tethered system due to the moving climber is proposed by reeling in-out tether at the end-body without thrust. The control strategy is implemented with the sliding mode control to suppress the libration angle of the climber to zero by the end of climber’s transfer phase. The numerical results show that the proposed control strategy is very effective in suppressing the libration of the climber in the three-body tethered system with tension control only. Furthermore, cases with limited tension control are examined. It reveals that a longer tether between the climber and the end-body is required to supplement the limited tension in suppressing the libration of the climber.  相似文献   

2.
Herein we analyze the dynamic behavior of a tethered satellite system for space debris capture, considering the large deformation of a tether. The tethered satellite system is modeled as two point masses and a string, and the equations of motion of the tethered satellite system are derived by using the absolute nodal coordinate formulation. To calculate the net velocity after debris capture, equations are established describing the momentum exchange between the net and the space debris. By using this model, the dynamic responses of the tethered satellite system after debris capture are calculated for the variations of the capture angles and capture velocities of the debris. This allows analysis of the orbital response of the tethered satellite system and the large tensions arising from tether tumbling. Finally, we analyze the effects of varying system parameters of the tethered satellite system and the space debris upon the dynamic responses.  相似文献   

3.
The tethered satellite with chemical propulsion has broad application prospects in the disposal of abandoned satellites, the orbital rescue of spacecrafts, and the transportation of space supplies, which is completely different from the traditional applications of tethered satellites. Therefore, new research on its dynamics, stability, and control becomes useful and interesting. In this article, based on a dumbbell model of tethered satellite, the dynamics equations of tethered system in orbital maneuvering are established. Furthermore, according to the definitions of transversal and radial propulsive coefficients, analytical solutions of the equilibrium position for librational angle are derived during maneuvering in orbital plane; meanwhile, the effects of propulsive coefficients on librational stability are analyzed, which provides a basis for a selection of expected attitude trajectory. Then, a method of hierarchical sliding-mode tension control is presented to track the expected in-plane angle. This method can address the underactuated problem of tethered systems without either complex coordinate transformation for the system state model or constraint equation restrictions. During orbital flight, in-plane and out-of-plane angles are decoupled, so the tether tension control cannot be conducted to inhibit the out-of-plane angle. To solve this problem, the binormal component of thrust acceleration normal to the orbital plane is adopted as a control variable, and a feedback linearization-based thrust controller is designed to damp out the out-of-plane angle. Afterwards, orbital transfer cases between two circular orbits are studied to demonstrate the effectiveness of the tethered satellite with chemical propulsion. Numerical simulation results indicate that the stability of librational angles has a close relation to propulsive coefficients, and distributions of stable centers and unstable saddle points are totally different on both sides of bifurcation point. In addition, tracking control requirements for tethered satellite are guaranteed by designed controllers, which ensure flight safety in orbital maneuvering.  相似文献   

4.
The plane motion in a circular orbit of a tethered system consisting of a space tug and a nonoperational spacecraft with propellant outage is considered, and the system motion with respect to its center of mass under the action of the gravitational torque and a constant driving force of the space tug is studied. Lagrangian formalism is used to construct the nonlinear equations of motion and the first-order approximation equations. An analysis of the frequencies and mode shapes permits determining a combination of the system parameters for which the deviation angles of the tether and the towed object do not attain significant values. The results can be used to analyze the behavior and the choice of theparameters of the tethered transport systemintended for the space debriswithdrawal from the orbit (upper stages of launchers and nonoperational satellites).  相似文献   

5.
研究平动点附近周期轨道上旋转多体绳系卫星编队系统的非线性耦合动力学问题。编队系统为各卫星质量接近的轮辐状结构,位于日地系统第二平动点附近,整个系统的旋转保持系绳处于张紧状态,建立Hill限制性三体问题的绳系编队系统动力学模型。针对处于留位阶段的典型对称三星编队,在位于较大Halo轨道上无控制力作用的情况下,进行母卫星轨道运动与系绳摆动耦合运动的动力学模拟,分析轨道方向、卫星质量比、系绳长度以及初始旋转速度对编队系统整体稳定性的影响。  相似文献   

6.
B. S. Yu  D. P. Jin  H. Wen 《Meccanica》2017,52(9):2035-2046
Based on the nonlinear dynamic equations of a tethered satellite system with three-dimensional attitude motion, an analytical tether length rate control law for deployment is derived from the equilibrium positions of the system and the scheme of the value range of the expected in-plane pitch angle. The proposed control law can guarantee that the tensional force acting on the end of the tether remains positive. The oscillation of the out-of-plane roll motion in conjunction with the in-plane pitch motion is effectively suppressed during deployment control. The analytical control law is still applicable, even if the system runs on a Keplerian elliptical orbit with a large eccentricity. The local stability of the non-autonomous system during deployment control is analyzed using the Floquet theory, and the global behavior is numerically verified using simple cell mapping. The numerical simulations in the paper demonstrate the proposed analytical control law.  相似文献   

7.
Optimal Control of Deployment of a Tethered Subsatellite   总被引:6,自引:0,他引:6  
Steindl  A.  Troger  H. 《Nonlinear dynamics》2003,31(3):257-274
One of the most important operations during a tethered satellite system mission is the deployment of a subsatellite from a space ship. We restrict tothe simple but practically important case that the system ismoving on a circular orbit around the Earth. The main problem duringdeployment due to gravity gradient is that the two satellites do not move along the straight radial relative equilibrium position which is stable for a tether of constant length. Instead, deploymentleads to an unstable motion with respect to the radial relativeequilibrium configuration. Therefore we introduce an optimal control strategy using theMaximum Principle to achieve a force controlled deployment of the tethered subsatellite from the radial relative equilibrium position close to the space ship to the radial relative equilibrium position far away from the space ship.  相似文献   

8.
The motion of a dumbbell-shaped body (a pair of massive points connected with each other by a weightless rod along which the elevator, i.e., a third point, is moving according to a given law) in an attractive Newtonian central field is considered. In particular, such a mechanical system can be considered as a simplified model of an orbital cable system equipped with an elevator. The practically most interesting case where the cabin performs periodic ??shuttle??motions is studied. Under the assumption that the elevator mass is small compared with the dumbbell mass, the Poincaré theory is used to determine the conditions for the existence of families of system periodic motions analytically depending on the arising small parameter and passing into some stable radial steady-state motion of the unperturbed problem as the small parameter tends to zero. It is also proved that, for sufficiently small parameter values, each of the radial relative equilibria generates exactly one family of such periodic motions. The stability of the obtained periodic solutions is studied in the linear approximation, and these solutions themselves are calculated up to terms of the firstorder in the small parameter. The contemporary studies of the motion of orbital dumbbell systems apparently originated in Okunev??s papers [1, 2]. These studies were continued in [3], where plane motions of an orbit tether (represented as a dumbbell-shaped satellite) in a circular orbit were considered in the satellite approximation. In [4], in the case of equal masses and in the unbounded statement, the energy-momentum method was used to perform the dynamic reduction of the problem and analyze the stability of relative equilibria. A similar technique was used in [5], where, in contrast to the above-mentioned problems, the massive points were connected by an elastic spring resisting to compression and forming a dumbbell with elastic properties. Under such assumptions, the stability of radial configurations was investigated in that paper. The bifurcations and stability of steady-state configurations of a deformable elastic dumbbell were also studied in [6]. Various obstacles arising in the construction of orbital cable systems, in particular, the strong deformability of known materials, were discussed in [7]. In [8], the problem of orbital motion of a pair of massive points connected by an inextensible weightless cable was considered in the exact statement. In other words, it was assumed that a unilateral constraint is imposed on themassive points. The conditions of stability of vertical positions of the relative equilibria of the cable system, which were obtained in [8], can be used for any ratio of the subsatellite and station masses. In turn, these results agree well with the results obtained earlier in the studies of stability of vertical configurations in the case of equal masses of the system end bodies [3, 4]. One of the basic papers in the dynamics of three-body orbital cable systems is the paper [9]. The steady-state motions and their bifurcations and stability were studied depending on the elevator cabin position in [10].  相似文献   

9.
为了对系留无人机系统的振动特性进行分析,本文将无人机的运动作为系留缆绳的边界条件,得到了系留无人机系统的面内运动方程.通过平衡分析得到了系留缆绳在风场中的平衡张力和平衡曲率的近似表达式,然后对系留无人机系统的运动方程进行线性化处理,最终求得了系留缆绳法向的频率方程和振型.在此基础上,数值分析了无人机驱动力和无人机倾角对...  相似文献   

10.
庞兆君  金栋平 《力学学报》2015,47(3):503-512
利用地面物理仿真平台研究了绳系航天器的混沌动力学行为. 首先, 根据天地动力学相似原理, 通过对卫星仿真器施加喷气力和动量轮力矩来模拟空间动力学环境, 提出了两种等效方案, 给出了它们各自适用的实验工况. 数值结果表明, 在轨绳系航天器在一定的参数条件下系绳摆动为周期或概周期运动、航天器姿态发生混沌运动. 物理仿真验证了等效方案的有效性, 揭示了绳系航天器的混沌运动特征, 表明在阻尼力矩的作用下可以避免绳系航天器混沌运动的发生.   相似文献   

11.
Pasca  Monica  Lorenzini  Enrico C. 《Meccanica》1997,32(4):263-277
A tethered satellite system to be flown in the relatively dense atmosphere is considered. The relevant dynamic problem is characterised by strong non-linearities due mainly to aerodynamic effects. Two mechanical models, with different degrees of fidelity, are developed for analysing the static equilibrium of the system; the former assumes a straight tether while the latter treats the tether as a perfectly flexible continuum. Both of them model the tether as an elastic continuum with mass and aerodynamic forces distributed along the system. The results of the first model, which are an approximation of the system behaviour, are used as a starting point for the numerical procedure adopted for computing more accurately the tether shape with the flexible model.  相似文献   

12.
The paper studies the nonlinear dynamics of a flexible tethered satellite system subject to space environments, such as the J 2 perturbation, the air drag force, the solar pressure, the heating effect, and the orbital eccentricity. The flexible tether is modeled as a series of lumped masses and viscoelastic dampers so that a finite multidegree-of-freedom nonlinear system is obtained. The stability of equilibrium positions of the nonlinear system is then analyzed via a simplified two-degree-freedom model in an orbital reference frame. In-plane motions of the tethered satellite system are studied numerically, taking the space environments into account. A large number of numerical simulations show that the flexible tethered satellite system displays nonlinear dynamic characteristics, such as bifurcations, quasi-periodic oscillations, and chaotic motions.  相似文献   

13.
Turning characteristics of multi-axle vehicles   总被引:3,自引:0,他引:3  
This paper presents a mathematical model for multi-axle vehicles operating on level ground. Considering possible factors related to turning motion such as vehicle configuration and tire slip velocities, equations of motion were constructed to predict steerability and driving efficiency of such vehicles. Turning radius, slip angle at the mass center, and each wheel velocity were obtained by numerically solving the equations with steering angles and average wheel velocity as numerical inputs. To elucidate the turning characteristics of multi-axle vehicles, the effect of fundamental parameters such as vehicle speed, steering angles and type of driving system were examined for a sample of multi-axle vehicles. Additionally, field tests using full-scale vehicles were carried out to evaluate the basic turning characteristics on level ground.  相似文献   

14.
The dynamic steady state responses of a poroelastic half-space soil medium subjected to a moving rectangular load are investigated analytically/numerically. The full dynamic poroelastic theory of Biot is employed, under the assumption of an incompressible solid grain and neglecting the apparent mass density. Using the Fourier transform, the governing equations of motion are then reduced to a system of four coupled ordinary differential equations which are solved semi-analytically. Soil vertical displacements, accelerations and pore water pressures induced by moving load are calculated. Computed result shows that load velocity and intrinsic permeability of the soil medium shows an apparent effect on its dynamic responses and pore water pressures.  相似文献   

15.
16.
This paper deals with the capabilities of linear and nonlinear beam theories in predicting the dynamic response of an elastically supported thin beam traversed by a moving mass. To this end, the discrete equations of motion are developed based on Lagrange’s equations via reproducing kernel particle method (RKPM). For a particular case of a simply supported beam, Galerkin method is also employed to verify the results obtained by RKPM, and a reasonably good agreement is achieved. Variations of the maximum dynamic deflection and bending moment associated with the linear and nonlinear beam theories are investigated in terms of moving mass weight and velocity for various beam boundary conditions. It is demonstrated that for majority of the moving mass velocities, the differences between the results of linear and nonlinear analyses become remarkable as the moving mass weight increases, particularly for high levels of moving mass velocity. Except for the cantilever beam, the nonlinear beam theory predicts higher possibility of moving mass separation from the base beam compared to the linear one. Furthermore, the accuracy levels of the linear beam theory are determined for thin beams under large deflections and small rotations as a function of moving mass weight and velocity in various boundary conditions.  相似文献   

17.
The perturbed rotational motion of a gyrostat about a fixed point with mass distribution near to Lagrange’s case is investigated. The gyrostat is subjected under the influence of a variable restoring moment vector, a perturbing moment vector, and a third component of a gyrostatic moment vector. It is assumed that the angular velocity of the gyrostat is sufficiently large, its direction is close to the axis of dynamic symmetry, and the perturbing moments are small as compared to the restoring ones. These assumptions permit us to introduce a small parameter. Averaged systems of the equations of motion in the first and second approximations are obtained. Also, the evolution of the precession angle up to the second approximation is determined. The graphical representations of the nutation and precession angles are presented to describe the motion at any time.  相似文献   

18.
The motion of a satellite in a circular orbit with respect to its center of mass is considered. The satellite bears an elastic tether system unrolled along the local vertical. The load at the end of the tether oscillates harmonically. The satellite motion under the action of the gravitational moment and the moment due to the tether tension force is studied. The bifurcation diagram is constructed and the hetero- and homoclinic separatrix trajectories are determined. Mel'nikov's method is used to study the satellite chaotic behavior near separatrices under the action of the periodic tether tension force. The results of the present paper can be used to analyze tether systems of gravitational stabilization and to study the orbital behavior of a satellite with an unrolled tether system with respect to the satellite center of mass.  相似文献   

19.
The governing differential equation of motion for an undamped thin rectangular plate with a number of bonded piezoelectric patches on its surface and arbitrary boundary conditions is derived using Hamilton’s principle. A moving mass traveling on an arbitrary trajectory acts as an external excitation for the system. The effect of the moving mass inertia is considered using all the out-of-plane translational acceleration components. The method of eigenfunction expansion is used to transform the equation of motion into a number of coupled ordinary differential equations. A classical closed-loop optimal control algorithm is employed to suppress the dynamic response of the system, determining the required voltage of each piezoactuator at any time interval. In a numerical example for a simply supported square plate under two different loading paths, the effect of the mass velocity and mass weight of the moving load on the dynamic behavior of the uncontrolled system is investigated. The results show that, depending on the path of the moving mass, the inertia effect is very important, causing different behaviors of the system. In addition, the number of vibrational modes involved in determining the dynamic response of the system is crucial. The inertia effect is more important for an orbiting mass loading case compared to the case in which the moving mass is traversing the plate on a straight line. A number of equally spaced piezo patches are used on the lower surface of the plate to control the displacement of the center point of the plate. The implemented control mechanism proves to be very efficient in suppressing the near resonant dynamic response of the system, requiring fairly low levels of voltage for each patch. Increasing the area of the employed piezo patches would reduce the required maximum voltage for controlling the response of the system.  相似文献   

20.
针对气动力矩严重影响低轨纳卫星姿态控制效果的问题,创新性地提出了利用质量矩技术将气动干扰转化为控制力矩的解决方法.由于气动力矩矢量垂直于大气来流速度方向,因而采用质量矩与磁力矩相结合的方式三轴全驱动控制卫星姿态,从而避免系统欠驱动. 建立双执行机构控制方式的姿态动力学模型,并根据各干扰项的影响简化了控制方程.针对气动力不确定、星体参数误差、未知环境影响等复杂干扰,设计了针对理想控制力矩基于干扰观测器的滑模控制器. 为减小滑块附加干扰力矩,研究了理想控制力矩的最优分配策略. 最后, 为双执行机构搭建了半物理仿真平台,结果表明: 姿态机动过程中, 与滑块加速度相关的附加惯性力矩远大于其他干扰项,最优力矩分配策略能够大幅减小快时变的附加干扰, 优化效果明显; 姿态保持过程中,干扰观测器能有效观测系统慢时变干扰, 提高滑模控制律的姿态控制精度,姿态角收敛误差小于$\pm $0.1$^\circ$.最终验证了在低轨纳卫星上利用质量矩技术控制姿态的可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号