首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mesoporous solids which possess average pore diameters between 7 and 20 nm, depending on the composition, have been prepared. The solids have the general formula Al100PχM20 where M = Al or Fe, and χ = 0, 4.5, 9, 18, 36, 72 or 144. The initial addition of phosphorus as phosphate transforms the originally crystalline oxide/oxides into amorphous solids. These amorphous materials possess a narrow pore size distribution: 80–90% of the pores lie within 1–2 nm of the average pore diameter. Subsequent incremental amounts of phosphorus transform the material into a crystalline solid whilst the pore size distribution becomes much wider and the maximum moves towards larger pore diameters. Substitution of 20% of the aluminium by iron results, at a low phosphorus content, in pores with smaller pore volumes and smaller surface areas.

The data in the dVp/dDp = > Dp) graphs, where Vp is the incremental pore volume and Dp is the average pore diameter, can be approximated using an admixture of Gaussian and Lorentzian curves. For low phosphorus contents the dVp/dDp = (Dp) curves have a mainly Gaussian profile but the gradual addition of phosphorus transforms them to Lorentzian-type curves. An attempt to approximate the histograms dVp =(Dp) with the minimum number of distribution curves made up of the corresponding Gaussian and Lorentzian components indicates that each successive addition of phosphorus creates a dominant new pore component at a larger pore diameter. At the same time, the components at smaller pore diameters are diminished and eventually disappear as more phosphorus is added.  相似文献   


2.
Melting and freezing of water in cylindrical silica nanopores   总被引:1,自引:0,他引:1  
Freezing and melting of H(2)O and D(2)O in the cylindrical pores of well-characterized MCM-41 silica materials (pore diameters from 2.5 to 4.4 nm) was studied by differential scanning calorimetry (DSC) and (1)H NMR cryoporometry. Well-resolved DSC melting and freezing peaks were obtained for pore diameters down to 3.0 nm, but not in 2.5 nm pores. The pore size dependence of the melting point depression DeltaT(m) can be represented by the Gibbs-Thomson equation when the existence of a layer of nonfreezing water at the pore walls is taken into account. The DSC measurements also show that the hysteresis connected with the phase transition, and the melting enthalpy of water in the pores, both vanish near a pore diameter D* approximately equal to 2.8 nm. It is concluded that D* represents a lower limit for first-order melting/freezing in the pores. The NMR spin echo measurements show that a transition from low to high mobility of water molecules takes place in all MCM-41 materials, including the one with 2.5 nm pores, but the transition revealed by NMR occurs at a higher temperature than indicated by the DSC melting peaks. The disagreement between the NMR and DSC transition temperatures becomes more pronounced as the pore size decreases. This is attributed to the fact that with decreasing pore size an increasing fraction of the water molecules is situated in the first and second molecular layers next to the pore wall, and these molecules have slower dynamics than the molecules in the core of the pore.  相似文献   

3.
E. A. Ustinov  D. D. Do 《Adsorption》2005,11(5-6):455-477
Adsorption of argon at its boiling point in finite cylindrical pores is considered by means of the non-local density functional theory (NLDFT) with a reference to MCM-41 silica. The NLDFT was adjusted to amorphous solids, which allowed us to quantitatively describe argon adsorption isotherm on nonporous reference silica in the entire bulk pressure range. In contrast to the conventional NLDFT technique, application of the model to cylindrical pores does not show any layering before the phase transition in conformity with experimental data. The finite pore is modeled as a cylindrical cavity bounded from its mouth by an infinite flat surface perpendicular to the pore axis. The adsorption of argon in pores of 4 and 5 nm diameters is analyzed in canonical and grand canonical ensembles using a two-dimensional version of NLDFT, which accounts for the radial and longitudinal fluid density distributions. The simulation results did not show any unusual features associated with accounting for the outer surface and support the conclusions obtained from the classical analysis of capillary condensation and evaporation. That is, the spontaneous condensation occurs at the vapor-like spinodal point, which is the upper limit of mechanical stability of the liquid-like film wetting the pore wall, while the evaporation occurs via a mechanism of receding of the semispherical meniscus from the pore mouth and the complete evaporation of the core occurs at the equilibrium transition pressure. Visualization of the pore filling and empting in the form of contour lines is presented.  相似文献   

4.
Argon adsorption (77 K) in atomistic silica nanopores of various sizes and shapes has been studied by means of grand canonical Monte Carlo simulations (GCMC). We discuss the effects of confinement (pore size), pore morphology (ellipsoidal, hexagonal, constricted pore), and surface texture (rough/smooth) on the thickness variation of the adsorbed film with pressure onto the disordered inner surface of porous materials (usually called t-plot or t-curve). We show that no confinement effect occurs when the diameter of the regular cylindrical pore is larger than 10 nm. For pores smaller than 6 nm, we find that the film thickness increases as the pore size decreases. We show that the adsorption isotherm in the rough pore can be described as the sum of an adsorbed amount similar to that found for a smooth pore (of the same radius) and a constant contribution due to atoms "trapped" in the infractuosities of the rough surface which act as a microporous texture. Simulation snapshots for Ar adsorption in hexagonal and ellipsoidal smooth pores indicate that at low pressures the gas/adsorbate interface retains memory of the pore shape and becomes cylindrical prior to the capillary condensation of the fluid in the pore. The film thickness in the hexagonal pore is close to that obtained for a cylindrical pore having a similar dimension. By contrast, we find that the film thickness for an ellipsoidal pore is always larger than that for an equivalent cylindrical pore (having the same length and volume but a circular section). We show that this effect strengthens as the pore size decreases and/or the pore asymmetry increases. Ar adsorption in a cylindrical constricted pore shows that the presence of the narrower part considerably modifies the adsorption mechanism. Finally, we report GCMC simulations of Ar adsorption (77 K) on a plane silica reference substrate for different intermolecular potentials. We discuss the effect of the interaction on the shape of the adsorption isotherm and compare our results with experiments.  相似文献   

5.
6.
Using Grand Canonical Monte Carlo simulation, we have studied the effects of confinement on argon and methanol adsorption in graphitic cylindrical and slit pores. Linear chain, zigzag and incomplete helical packing are observed for argon adsorption in cylindrical pores. However, for methanol adsorption different features appear because the electrostatic interactions favour configurations that maximize the hydrogen bonding among methanol molecules. We have found zigzag chains with hydrogen-bonded structures for methanol adsorption in cylindrical and slit pores. To investigate how dense the adsorbed phase is and how many molecules could be packed per unit physical volume of the solid, we consider two different definitions of pore density; one based on the physical volume and the other on the accessible volume. That based on accessible volume gives a measure of the fluid density, while that based on the physical volume gives a measure of how much adsorbate can be stored per unit volume of the adsorbent. It is found that the adsorbate is denser in cylindrical pores, but that slit pores can pack more molecules per unit solid volume. We also discuss the effects on the isosteric heat of argon and methanol of pore size, pore geometry and loading.  相似文献   

7.
Poly(ethylene oxide)-poly(methyl acrylate) diblock copolymers with narrow molecular weight distributions were synthesized using atom transfer radical polymerization. The copolymers were used as micellar templates for the synthesis of mesoporous silicas. The products were characterized using small-angle X-ray scattering, transmission electron microscopy (TEM) and nitrogen adsorption. The obtained silicas exhibited two-dimensional hexagonal structures of cylindrical mesopores, and thus can be classified as SBA-15 silicas. In some cases, the size of ordered domains was very small. The (100) interplanar spacings were 13–17 nm, depending on the size of the diblock copolymer used and on the synthesis conditions. Nitrogen adsorption showed that the silicas exhibited specific surface areas of 350–800 m2 g−1, pore volumes ∼1 cm3 g−1, and narrow pore size distributions. The BJH (nominal) pore diameters were up to ∼20 nm, but actual diameters of cylindrical pores are expected to be somewhat smaller. In many cases, the mesopores exhibited constrictions.  相似文献   

8.
N2静态吸附容量法的测定结果表明,磷钨酸铯盐(CsxH3-xPW12O40)的孔窝和孔分布与x值的大小相关。x〈1.5的CsxH3-xPW12O40孔容相近,孔分布近似;当x〉1.5时,CsxH3-xPW12O40的孔主要是孔径小于10nm的中孔和微孔,平均孔径及孔容随x的增加而增大。SEM和TEM的观测结果表明,CsxH3-xPW12O40的孔是微细粒子堆积留下的空隙孔,可能不存在晶内孔。  相似文献   

9.
Ordered porous silicas with unprecedented loadings of pendant vinyl groups have been synthesized via co-condensation of tetraethyl orthosilicate (TEOS) and triethoxyvinylsilane (TEVS) under basic conditions in the presence of cetyltrimethylammonium surfactant. The resulting organosilicate-surfactant composites exhibited at least one low-angle X-ray diffraction (XRD) peak up to the TEVS:TEOS molar ratio of 7:3 (70% TEVS loading) in the synthesis gel. The surfactant was removed from these composites without any structural collapse. Nitrogen adsorption provided strong evidence of the presence of uniformly sized pores and the lack of phase separation up to TEVS:TEOS ratios as high as 13:7 (65% TEVS loading), whereas (29)Si MAS NMR and high-resolution thermogravimetry showed essentially quantitative incorporation of the organosilane. Thus, a hitherto unachieved loading level for pendant groups, considered by many to be impossible to achieve for stable organosilicas because of the expected framework connectivity constraints, has been obtained. The resulting vinyl-functionalized silicas exhibited gradually decreasing pore diameter (from 2.8 to 1.7 nm for TEVS loadings of 25-65%) and pore volume as the loading of pendant groups increased, but the specific surface area was relatively constant. Because of the reactivity of vinyl groups, ordered silicas with very high loadings of these groups are expected to be robust starting materials for the synthesis of other organic-functionalized ordered microporous materials. Herein, we demonstrate that these starting materials can also be transformed via calcination into ordered microporous silicas with pore diameters tailorable from 2.5 to as little as 1.4 nm simply by using an appropriate loading of the vinyl-functionalized precursor. This ease of the micropore size adjustment and the attained degree of structural ordering (as judged from XRD) have not been reported before. The novel ordered microporous materials reported herein are promising as adsorbents and catalyst supports.  相似文献   

10.
Polymorph selectivity has been achieved during crystallization of anthranilic acid (AA) and 5-methyl-2-[(2-nitrophyenyl)amino]-3-thiophenecarbonitrile (ROY), both considered benchmarks of polymorphic behavior, within nanoporous glass beads and polymer monoliths. Whereas polymorph III of AA crystallizes from the melt on nonporous glass beads or within larger pores, the metastable polymorph II crystallizes in pores with diameters <23 nm, with the selectivity toward this form increasing with decreasing pore size. Of the six ROY polymorphs characterized by single-crystal X-ray diffraction, the yellow form (Y) crystallizes during evaporation of pyridine solutions imbibed by the 30-nm cylindrical pores of porous polycyclohexylethylene (p-PCHE) monoliths. Although both R and ON grow from the melt on the external surfaces of PCHE, only the red form (R) crystallizes in the pores. Amorphous ROY also forms in p-PCHE pores during evaporation from pyridine solutions, subsequently crystallizing to the R nanocrystals upon heating. Although heterogeneous nucleation on the pore walls may play a role, these observations suggest that nucleation and polymorph selectivity is governed by critical size constraints imposed by the ultrasmall pores. The ability to achieve polymorph selectivity in both glass and polymer matrices suggests wide-ranging compatibility with various organic crystalline solids, promising a new approach to controlling polymorphism and searching for unknown polymorphs.  相似文献   

11.
Equilibrium low temperature nitrogen adsorption and a new method based on the kinetics of water vapor sorption at room temperature are used for a comparative study of pore morphology of high-silica porous glass. The values of the total pore volume, the specific surfaces, the effective mesopore diameters, and the fraction of each mode in the total mesopore volume are established using both techniques. It is found that the rate of water vapor sorption at constant pressure grows in inverse ratio to the diameter of cylindrical menisci in pores. The time dependence of the volume of adsorbed water is linear, while the characteristic time of filling for each pore mode varies directly with the square of the effective pore mode diameter. The proposed new kinetic porometry technique based on analyzing water vapor adsorption kinetics at room temperature is quite simple as it requires no complicated vacuum equipment and allows the simultaneous examination of large numbers of porous material samples.  相似文献   

12.
The structural and geometric parameters of a silica matrix (SM) for the synthesis of heterosurface adsorbents (HAs) are optimized. Modification is performed by shielding the external surfaces of alkyl-modified silica (AS) using human serum albumin and its subsequent crosslinking. The structural and geometric characteristics of the SM, AS, and HA are measured via low-temperature nitrogen adsorption. It is found that the structural characteristics of AS pores with diameters D < 6 nm do not change during HA synthesis, while the volume of pores with diameters of 6 nm < D < 9 nm shrinks slightly due to the adsorption of albumin in the pore orifices. It is established that the volume of pores with diameters D > 9 nm reduces significantly due to adsorption of albumin. It is concluded that silica gel with a maximum pore size distribution close to 5 nm and a minimal proportion of pores with D > 9 nm is optimal for HA synthesis; this allows us to achieve the greatest similarity between the chromatographic retention parameters for HA and AS. The suitability of the synthesized adsorbents for analyzing drugs in biological fluids through direct sample injection is confirmed by chromatography. It was found that the percentage of the protein fraction detected at the outlet of the chromatographic column is 98%.  相似文献   

13.
The performance of macro-porous particles in capillary electrochromatography is studied. Three reversed-phase stationary phases with pore diameters between 500 A and 4000 A have been tested for separation efficiency and mobile phase velocity. With these stationary phases, a large portion of the total flow appears to be through the pores of particles, thereby increasing the separation efficiency through a further decrease of the flow inhomogeneity and through enhancement of the mass transfer kinetics. The effects of pore size and mobile phase composition on the plate height and mobile phase velocity have been studied. With increasing buffer concentrations and larger pore diameters, higher mobile phase velocities and higher separation efficiencies have been obtained. Columns packed with 7 microns particles containing pores with a diameter of 4000 A generated up to 430,000 theoretical plates/m for retained compounds. Reduced plate heights as low as 0.34 have been observed, clearly demonstrating that a significant portion of the flow is through the pores. For the particles containing 4000 A pores no minimum was observed in the H-u plot up to linear velocities of 3.3 mm/s, suggesting that the separation efficiency is dominated by axial diffusion. On relatively long (72 cm) columns, efficiencies of up to 230,000 theoretical plates/column have been obtained under non-optimal running conditions. On short (8.3 cm) columns fast separations could be performed with approximately 15,000 theoretical plates generated in less than 30 s.  相似文献   

14.
Membrane Emulsification Using Sol-Gel Derived Macroporous Silica Glass   总被引:2,自引:0,他引:2  
A macroporous silica glass membrane with continuous cylindrical pores was prepared by a sol-gel process using phase separation. The applicability of the sol-gel derived macroporous silica to the membrane emulsification process was evaluated in comparison with a conventional SPG (Silasu Porous Glass) membrane.Aqueous colloidal silica in one side of the membrane was emulsified through the pores under an applied pressure to a toluene bath containing surfactant. With the sol-gel and SPG membranes with respective median pore diameters of 0.6 and 1.0 m, emulsions with almost the same droplet size centered around 3 m were obtained. The permeation rate of the sol-gel derived membrane was about 1.6 times faster than SPG, which reflected higher pore volume of the former one.  相似文献   

15.
We present a neutron scattering analysis of the density and the static structure factor of confined methanol at various temperatures. Confinement is performed in the cylindrical pores of MCM-41 silicates with pore diameters D=24 and 35 A. A change of the thermal expansivity of confined methanol at low temperature is the signature of a glass transition, which occurs at higher temperature for the smallest pore. This is evidence of a surface induced slowing down of the dynamics of the fluid. The structure factor presents a systematic evolution with the pore diameter, which has been analyzed in terms of excluded volume effects and fluid-matrix cross correlation. Conversely to the case of Van der Waals fluids, it shows that stronger fluid-matrix correlations must be invoked most probably in relation with the H-bonding character of both methanol and silicate surface.  相似文献   

16.
Phase behavior of undecane-tetradecane (n-C11H24-C14H30, C11-C14) mixtures in bulk and confined in SBA-15 have been studied using differential scanning calorimetry. The bulk C11-C14 system shows multiple phase regions due to rotator phase. Confined in the pores of SBA-15 (pore diameters 3.8-7.8 nm), the mixtures only show a melting boundary of a straight line and a curve, respectively. In SBA-15 (17.2 nm), phase behavior of themixtures has some similarity to that of the bulk. Under confinement, the phase diagrams of the mixtures vary with the pore size, temperature, and compositions.  相似文献   

17.
The evaluation of the pore-size distribution (PSD) of natural and modified mesoporous zeolites, i.e., clinoptilolites is presented. We demonstrate the SEM results showing that the pores of fracture-type from 25-50 nm to 100 nm in size between clinoptilolite grains, as well as pores between crystal aggregates up to 500 nm in size are present in the studied material. The detailed distribution of pore sizes and tortuosity factor of the above-mentioned materials are determined from the adsorption-desorption isotherms of nitrogen measured volumetrically at 77 K. To obtain the reliable pore size distribution (PSD) of the above-mentioned materials both adsorption and desorption branches of the experimental hysteresis loop are described simultaneously by recently developed corrugated pore structure model (CPSM) of Androutsopoulos and Salmas. Evaluated pore size distributions are characterized by well-defined smooth peaks placed in the region of the mesoporosity. Moreover, the mean pore diameter calculated from the classical static measurement of nitrogen adsorption at 77 K correspond very well to the pore diameters from SEM, showing the applicability of the CPSM for characterization of the porosity of natural zeolites. We conclude that classical static adsorption measurements combined with the proper modeling of the capillary condensation/evaporation phenomena are a powerful method which can be applied for pore structure characterization of natural and modified clinoptilolites.  相似文献   

18.
A new packing material for ligand-exchange chromatography, L -proline-modified hydrolyzed vinyl acetate-divinylbenzene copolymer microspheres, has been prepared and evaluated. The microspheres, prepared by a one-step swelling and polymerization method, have a narrow bead size (as determined by scanning electron microscopy, SEM), a broad pore-size distribution (by nitrogen adsorption) and, especially, inhomogeneous structural composition (by differential scanning calorimetry). The support, which has an L -proline content of 0.35 mmol g–1 (nitrogen analysis), provides good enantioselectivity and column efficiency. Twenty-three of the twenty-four common D ,L -amino acids tested were resolved on a 250 mm × 4.6 mm i.d. column and mixtures of up to seven racemic amino acids were easily separated into their enantiomers. Two average pore diameters, volume-average (dv) and surface-average (ds) pore diameters, are defined. The ratio dv/ds is used to characterize the broadness of the pore-size distribution. It is shown that the widely used formula d=4Vp/S for cylindrical pores, where Vp is pore volume and S the specific surface area, gives the surface-average pore diameter.  相似文献   

19.
孔结构对活性炭吸附水溶液中铅离子的影响   总被引:2,自引:0,他引:2  
选取三种表面化学性质相近的活性炭(AC),通过等温吸附实验考察活性炭对水溶液中铅离子的吸附性能,利用扫描电子显微镜(SEM)观察活性炭的表面微观形貌,通过低温(77 K)液氮吸附测定活性炭的比表面积和孔容,并分别以密度泛函理论(DFT)和Barrett-Joyner-Halenda (BJH)法计算微孔和中孔的孔径分布.结果表明:选用的三种活性炭AC1、AC2、AC3在比表面积和总孔容上呈依次下降的趋势,但表面开放孔均匀分布的AC2,具有最高的饱和吸附量,孔结构类似颗粒堆积孔的AC3,具有与表面开放孔分布集中的AC1相近的饱和吸附量;通过对孔结构与吸附量的关联分析可知,在活性炭吸附铅离子的过程中, 0.4-0.6 nm的孔是有效吸附孔, 10.5-20.6 nm、20.6-55.6 nm、5.2-10.5 nm三个区间的孔则会对吸附产生阻碍作用.  相似文献   

20.
In this work we report molecular simulation results for argon and krypton adsorption on atomistic models of templated mesoporous silica materials. These models add atomistic levels of detail to mesoscale representations of these porous materials, which were originally generated from lattice Monte Carlo simulations mimicking the synthesis process of templated mesoporous silicas. We generate our atomistic pore models by carving out of a silica block a ‘mathematically-smooth’ representation of the pores from lattice MC simulations. Following that procedure, we obtain a model material with mean mesopore and micropore diameters of 5.4 nm and 1.1 nm, respectively (model A). Two additional model materials were considered: one with no microporosity, and with mesopores similar to those of model A (model B), and a regular cylindrical pore (model C). Simulation results for Ar and Kr adsorption on these model materials at 77 K and 87 K shows that model A provides the best agreement with experimental data; however, our results suggest that fine-tuning the microporosity and/or the surface chemistry (i.e., by decreasing the density of OH groups at the pore surface) of model A can lead to better agreement with experiments. The filling of the mesopores in model materials A and B proceeded via a classical capillary condensation mechanism, where the pores fill at slightly different pressures. This observation contrasts with what was observed in our previous study (Coasne, et al. in Langmuir 22:194–202, 2006), where we considered atomistic silica mesopores with an important degree of surface roughness at length scales below 10 Å, for which we observed a quasi-continuous mesopore filling involving intermediate phases with liquid-like “bridges” and gas-like regions. These results suggest that pore surface roughness, and other morphological features such as constrictions, play an important role in the mechanism of adsorption and filling of the mesopores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号