首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, the propagation of sound in a lined duct containing sheared mean flow is studied. Walls of the duct are acoustically treated with absorbent poroelastic foams. The propagation of elasto-acoustic waves in the liner is described by Biot's model. In the fluid domain, the propagation of sound in a sheared mean flow is governed by the Galbrun's equation. The problem is solved using a mixed displacement-pressure finite element formulation in both domains. A 3D implementation of the model has been performed and is illustrated on axisymmetric examples. Convergence and accuracy of the numerical model are shown for the particular case of the modal propagation in a infinite duct containing a uniform flow. Practical examples concerning the sound attenuation through dissipative silencers are discussed. In particular, effects of the refraction effects in the shear layer as well as the mounting conditions of the foam on the transmission loss are shown. The presence of a perforate screen at the air-porous interface is also considered and included in the model.  相似文献   

2.
A semi-analytical finite element (SAFE) method is presented for analyzing the wave propagation in viscoelastic axisymmetric waveguides. The approach extends a recent study presented by the authors, in which the general SAFE method was extended to account for material damping. The formulation presented in this paper uses the cylindrical coordinates to reduce the finite element discretization over the waveguide cross-section to a mono-dimensional mesh. The algorithm is validated by comparing the dispersion results with viscoelastic cases for which a Superposition of Partial Bulk Waves solution is known. The formulation accurately predicts dispersion properties and does not show any missing root. Applications to viscoelastic axisymmetric waveguides with varying mechanical and geometrical properties are presented.  相似文献   

3.
4.
Hermitian elements are used in a finite element solution for the eigenvalue problem in lined ducts with flow. These elements give significantly greater accuracy for reduced dimensionality when compared with Lagrangian elements. Spurious mode generation associated with the Lagrangian formulation is eliminated. A dramatic improvement in the ratio of the number of reliable eigenvalues to the total number of computed eigenvalues is effected by the use of a condensation scheme based on the no-flow eigenvectors. Results are presented for two dimensional and axisymmetric ducts. In the axisymmetric case good resolution is obtained even for high order, high frequency modes by the use of continuously graded meshes.  相似文献   

5.
The linear elastic, dynamic transient, analysis of some circular plate bending problems is considered by using axisymmetric, parabolic isoparametric, elements with an explicit time marching scheme. The effects of rotatory inertia and transverse shear deformation are included. A special mass lumping scheme and the use of a reduced integration technique allow the treatment of thin as well as thick plates. Several numerical examples are presented and compared with results from other sources.  相似文献   

6.
7.
8.
9.
Flow supercavitation begins when fluid is accelerated over a sharp edge, usually at the nose of an underwater vehicle, where a phase change occurs and causes a low density gaseous cavity to gradually envelop the whole object (supercavity) thereby allowing for higher speeds of underwater vehicles. The supercavity may be maintained through ventilated cavitation caused by injection of gases into the cavity, which causes fluctuations at the vapor–water interface. A major issue that concerns the efficient operation of an underwater object’s guidance system (which is achieved by high frequency acoustic sensors mounted within the nose region), is the hydrodynamic noise produced due to the fluctuating vapor–water interface. It is important to carry out a detailed study on the effect of self-noise at the vehicle’s nose that is generated by the ventilating gas jet impingement on the supercavity wall. For this purpose, the present study uses a boundary element method which is more versatile compared to other numerical techniques such as the finite element/finite difference methods. The variation of acoustic pressure at the vehicle nose for various shapes of cavitators, boundary conditions and jet impact diameters are presented. Comparisons are made with the semi-analytical procedure of Howe et al. (Howe et al., On self-noise at the nose of a supercavitating vehicle. Journal of Sound and Vibration, 322 (2009a), 772–784) and finite element based COMSOL commercial package. Several issues pertaining to the behaviour of analytical and numerical results are highlighted. Finally, the proposed boundary element technique is used to study arbitrary shapes of supercavities which may encountered at various stages of supercavity development.  相似文献   

10.
11.
Free vibration analysis of functionally graded curved panels is carried out using a higher-order formulation. A C0 finite element formulation is used to carry out the analysis. The element consists of nine degrees of freedom per node with higher-order terms in the Taylor's-series expansion, which represents the higher-order transverse cross-sectional deformation modes. The formulation includes Sanders’ approximation for doubly curved shells considering the effects of rotary inertia and transverse shear. A realistic parabolic distribution of transverse shear strains through the shell thickness is assumed and the use of shear correction factor is avoided. Material properties are assumed to be temperature independent and graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. Heat conduction between ceramic and metal constituents is neglected. The accuracy of the formulation is validated by comparing the results with those available in the literature. Effects of panel geometry parameters and boundary conditions are studied.  相似文献   

12.
13.
A new method is developed to compute the acoustic field outside an axisymmetric structure from the normal velocity values on the surface. Surface pressure and normal velocity are expanded in a series of functions that are orthonormal on the surface of the structure and have a constant ratio of pressure to normal derivative of pressure at vanishing frequency. The Helmholtz integral equation is next used to compute the field everywhere outside the structure. The method is tested by applying it to scattering from a rigid cylinder with hemispherical endcaps. The series is shown to converge very rapidly.  相似文献   

14.
A finite element is presented to analyze the three-dimensional (3-D) vibration of piezoelectric coupled circular and annular plates. The proposed finite element is a modification of a conventional axisymmetric finite element and is capable of conducting both axisymmetric and nonaxisymmetric vibration analysis of circular and annular laminated plates, with piezoelectric layers therein. The present formulation, a two-dimensional model itself, can investigate 3-D vibration of those plates for a preselected number of nodal diameters, and is therefore more economical than the conventional 3-D finite element analysis, yet still has almost the same accuracy and versatility as the 3-D analysis. In cases such as analysis of stators of traveling wave ultrasonic motors where only vibration modes with particular numbers of nodal diameters are of interest, the proposed approach is very convenient and useful.  相似文献   

15.
The Maxwell equations in the MHD limit in heterogeneous axisymmetric domains composed of conducting and non-conducting regions are solved by using a mixed Fourier/Lagrange finite element technique. Finite elements are used in the meridian plane and Fourier modes are used in the azimuthal direction. Parallelization is made with respect to the Fourier modes. Continuity conditions across interfaces are enforced using an interior penalty technique. The performance of the method is illustrated on kinematic and full dynamo configurations.  相似文献   

16.
We consider the application of least-squares finite element models combined with spectral/hp methods for the numerical solution of viscous flow problems. The paper presents the formulation, validation, and application of a spectral/hp algorithm to the numerical solution of the Navier–Stokes equations governing two- and three-dimensional stationary incompressible and low-speed compressible flows. The Navier–Stokes equations are expressed as an equivalent set of first-order equations by introducing vorticity or velocity gradients as additional independent variables and the least-squares method is used to develop the finite element model. High-order element expansions are used to construct the discrete model. The discrete model thus obtained is linearized by Newton’s method, resulting in a linear system of equations with a symmetric positive definite coefficient matrix that is solved in a fully coupled manner by a preconditioned conjugate gradient method. Spectral convergence of the L2 least-squares functional and L2 error norms is verified using smooth solutions to the two-dimensional stationary Poisson and incompressible Navier–Stokes equations. Numerical results for flow over a backward-facing step, steady flow past a circular cylinder, three-dimensional lid-driven cavity flow, and compressible buoyant flow inside a square enclosure are presented to demonstrate the predictive capability and robustness of the proposed formulation.  相似文献   

17.
When beams are connected at an arbitrary angle and subjected to an external excitation, both longitudinal and bending waves are generated in the system. Since longitudinal wavelengths are considerably longer than bending wavelengths in the mid-frequency region, the number of bending wavelengths in the beams is considerably larger than the number of longitudinal wavelengths. In this paper, plannar beams connected at arbitrary angles are considered. The energy finite element analysis (EFEA) is employed for modelling the bending behavior of the beams and the conventional finite element analysis (FEA) is utilized for modelling the longitudinal vibration in the beams. Thus, a basic hybrid FEA formulation is presented for mid-frequency analysis of systems that contain two types of energy. The bending vibration is associated with the long members in the system and the longitudinal vibration is associated with the short members. The long members are considered to have high modal overlap and to contain several wavelengths within their dimension, and uncertainty effects are present. The short members contain a small number of wavelengths, and exhibit a low modal overlap. Due to the low modal overlap the resonant frequencies are spaced far apart in the frequency domain, therefore the short members exhibit resonant or non-resonant behavior depending on the frequency of the excitation.In this work, the bending and the longitudinal vibration within the same beam member are treated as a long and as a short member, respectively. A hybrid joint formulation is developed between long and short members. Power reflection and transmission coefficients are derived for each joint. The distribution of the energy throughout the system demonstrates a strong dependency on the power transfer coefficients. Several systems are analyzed by the hybrid FEA and by analytical solutions, and good correlation between them is observed.  相似文献   

18.
An energy finite element analysis (EFEA) formulation for computing the high frequency behavior of plate structures in contact with a dense fluid is presented. The heavy fluid loading effect is incorporated in the derivation of the EFEA governing differential equations and in the computation of the power transfer coefficients between plate members. The new formulation is validated through comparison of EFEA results to classical techniques such as statistical energy analysis (SEA) method and the modal decomposition method for bodies of revolution. Good correlations are observed and the advantages of the EFEA formulation are identified.  相似文献   

19.
This paper presents an extension of the least square finite element formulation associated to the discrete ordinates method to solve collimated irradiation problems in frequency domain. The features of the method are shown with a separation of the intensity into its collimated and scattered parts for a better handling of discontinuities due to the boundary conditions of Dirichlet type used in optical tomography applications. Numerical tests are used to gauge the accuracy of the model in both isotropic and anisotropic scattering media, with and without frequency modulation. The results show that the method is accurate compared to some reference solutions.  相似文献   

20.
A finite element analysis is developed for finite and infinite solid or hollow cylinders in axisymmetric vibration. The elements themselves are solid or annular cylinders, and have 16 degrees of freedom. Results are given for the propagation constants of solid and hollow infinite cylinders, and excellent agreement is found with those from the exact Pochhammer theory and Mindlin and McNiven's three-mode theory. Frequency spectra are presented for the symmetric and antisymmetric modes of solid and hollow finite rods. Excellent agreement is found with experimental results, and this suggests that some of the results obtained from the three-mode theory by McNiven et al., and in particular the frequency of the end mode, are in error by more than 10%. Details of the finite element inertia and stiffness matrices appear in an appendix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号