首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a physical scheme to teleport an unknown atomic entangled state via cavity decay. In the teleportation process, four-particle Greenberger-Horne-Zeilinger (GHZ) state is used as quantum channel, and two unknown entangled atoms and two of four atoms in the four-particle GHZ state are trapped in four leaky cavities, respectively. Based on the joint detection of the photons leak out from the four cavities, we can teleport an unknown entangled state to two other remote atoms with certain probability and high fidelity.  相似文献   

2.
We present a physical scheme to teleport an unknown atomic entangled state via cavity decay. In the teleportation process, four-particle Greenberger-Horne-Zeilinger (GHZ) state is used as quantum channel, and two unknown entangled atoms and two of four atoms in the four-particle GHZ state are trapped in four leaky cavities,respectively. Based on the joint detection of the photons leak out from the four cavities, we can teleport an unknown entangled state to two other remote atoms with certain probability and high fidelity.  相似文献   

3.
We present a scheme for transferring atomic entangled states via adiabatic passage. In the scheme, we use photons to achieve efficient quantum transmission among spatially distant atoms. The probability of the successful transferring quantum state approaches 1. Meanwhile, the scheme is robust against the effects of atomic spontaneous emission.  相似文献   

4.
Teleportation schemes with a tripartite entangled state in cavity QED are investigated. The schemes do not need Bell state measurements and the successful probabilities reach optimality. In addition, the schemes are insensitive to both the cavity decay and the thermal field. We first consider two teleportation schemes via a tripartite GHZ state.The first one is a controlled one for an unknown single-qubit state. The second scheme is teleportation of unknown two-atom entangled state. Then we consider teleporting of single-qubit arbitrary state via a tripartite W state.  相似文献   

5.
Teleportation schemes with a tripartite entangled state in cavity QED are investigated. The schemes do not need Bell state measurements and the successful probabilities reach optimality. In addition, the schemes are insensitive to both the cavity decay and the thermal field. We first consider two teleportation schemes via a tripartite GHZ state. The first one is a controlled one for an unknown single-qubit state. The second scheme is teleportation of unknown two-atom entangled state. Then we consider teleporting of single-qubit arbitrary state via a tripartite W state.  相似文献   

6.
A scheme for preparation of the two-atoms entangled state via the resonant interaction of a quantized cavity field with atom is presented. It is injected an two-level atom initially prepared in the superposition of the ground state and excited state through the cavity prepared in the vacuum state. The atom passing through the cavity creates atom-field entanglement. The second two-level atom prepared in the ground state is injected into the cavity at different angle. After the interaction with the cavity field, the two-atoms entangled state is produced and the cavity field is still in the vacuun state. Comparing with the existing schemes, ours is easier to realize experimently.  相似文献   

7.
We present an experimentally feasible scheme for teleportation of an arbitrary unknown two-atom entangled state by using two-atom Bell states in driven thermal cavities. In this scheme, the effects of thermal field and cavity decay can be all eliminated. Moreover, the present scheme is feasible according to current technologies.  相似文献   

8.
A cavity quantum electrodynamics scheme for preparing a genuinely entangled state [A. Borras, et al., J. Phys. A 40 (2007) 13407] on six two-level atoms is proposed. In the scheme, the atom-cavity detuning is much bigger than the atom-cavity coupling strength and the necessary preparation time is much shorter than the Rydberg-atom lifespan. Hence the scheme has two distinct features, i.e., insensitive to the cavity decay and the atom radiation.  相似文献   

9.
Considering the adiabatical approximation and the large detuning condition, we give the effective Hamiltonian of a ladder-type three levels atom interacting with a bimodal cavity field. If two identical three-level atoms are sent through the cavity one by one, a two-atom entangled state can be generated. With the choice of the appropriate interaction time, a maximally entangled state of two atoms can be obtained if decoherence effect is ignored. Moreover, we discuss the effect of cavity decay on four physical quantities including atomic population probability, residual entanglement of the first atom and the cavity field, concurrence between the two atoms, and fidelity for generating atomic EPR state, all of which decrease with the increase of cavity decay when the other parameters are fixed.  相似文献   

10.
疏静  刘中 《理论物理通讯》2010,53(6):1155-1159
We propose a scheme to generate two-atom maximally entangled state in cavity quantum electrodynamies (QED). The scheme can 5e extended to generation of entangled multi-atom Dicke states if we control the interaction time of atoms with cavity modes. We use adiabatically state evolution under large atom-cavity detuning, so the scheme is insensitive to atomic spontaneous decay. The influence of cavity decay on fidelity and success probability is discussed.  相似文献   

11.
Considering the adiabatical approximation and the large detuning condition, we give the effective Hamiltonian of a ladder-type three levels atom interacting with a bimodal cavity field. If two identical three-level atoms are sent through the cavity one by one, a two-atom entangled state can be generated. With the choice of the appropriate interaction time, a maximally entangled state of two atoms can be obtained if decoherence effect is ignored. Moreover, we discuss the effect of cavity decay on four physical quantities including atomic population probability, residual entanglement of the first atom and the cavity field, concurrence between the two atoms, and fidelity for generating atomic EPR state, all of which decrease with the increase of cavity decay when the other parameters are fixed.  相似文献   

12.
We propose a simple scheme for the generation of a peculiar tripartite entangled state via thermal cavity. The peculiar tripartite entangled state shares features of the GHZ and 14/ state simultaneously. The photon-numberdependent parts in the effective Hamiltonian are canceled with the assistance of a strong classical field, thus the scheme is insensitive to both the thermal field and the cavity decay. The only thing one needs to do is to modulate the interaction time only once.  相似文献   

13.
A scheme is presented for generating entangled states for two three-level atoms in a cavity. In the scheme two atoms simultaneously interact with a cavity mode with a small detuning. Thus, the operation time is very short, which is important in view of decoherence.  相似文献   

14.
We have proposed an alternative scheme for teleportation of two-atom entangled state in cavity QED. It is based on the degenerate Raman interaction of a single-mode cavity field with a ∧-type three-level atom. The prominent feature of the scheme is that only one cavity is required, which is prior to the previous one. Moreover, the atoms need to be detected are reduced compared with the previous scheme. The experimental feasibility of the scheme is discussed.The scheme can easily be generalized for teleportation of N-atom GHZ entangled states. The number of the atoms needed to be detected does not increase as the number of the atoms in GHZ state increases.  相似文献   

15.
We have proposed an alternative scheme for teleportation of two-atom entangled state in cavity QED. It is based on the degenerate Raman interaction of a single-mode cavity field with a A-type three-level atom. The prominent feature of the scheme is that only one cavity is required, which is prior to the previous one. Moreover, the atoms need to be detected are reduced compared with the previous scheme. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized for teleportation of N-atom GHZ entangled states. The number of the atoms needed to be detected does not increase as the number of the atoms in GHZ state increases.  相似文献   

16.
We construct the three-mode cyclic squeezed states and analyze its squeezing property by using the technique of integration within an ordered product of operators and the natural representation of the two-mode squeezing operator in the Einstein-Podolsky-Rosen entangled state basis.  相似文献   

17.
We present an optical scheme to almost completely teleport a bipartite entangled coherent state using a four-partite cluster-type entangled coherent state as quantum channel. The scheme is based on optical elements such as beam splitters, phase shifters, and photon detectors. We also obtain the average fidelity of the teleportation process. It is shown that the average fidelity is quite close to unity if the mean photon number of the coherent state is not too small.  相似文献   

18.
In this paper, a scheme is proposed for realization of two-qubit controlled-not gates and teleportation of an entangled state of atom-cavity. In this scheme, applying hyperfine levels of atom, we consider A-type three-level atom interacting resonantly or nonresonantly with cavity field that is prepared in σ- polarized. We consider the experimental feasibility of this scheme and compare our results with other schemes.  相似文献   

19.
A scheme is suggested for the generation of multi-atom maximally entangled states with a cavity in a thermalstate. In this scheme several appropriately prepared two-level atoms are simultaneously sent through the nonresonantcavity. We divide the whole atom-cavity interaction time into two equal parts. At the end of the first part a π pulse isapplied to the atoms using a classical field. Then the photon-number-dependent shifts on the atomic states are cancelledand the atomic system finally evolves to a maximally entangled state.  相似文献   

20.
利用纠缠交换的方法实现了两粒子和三粒子纠缠态的纯化,并将该方法推广到多粒子纠缠态的情况,而且得出在所有的情况下从部分纠缠态获得最大纠缠态的概率均为2|b|2。在此过程中我们只使用了幺正变换和Hadam ard变换,而不需要经典通信。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号