首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Starting from an improved projective method and a linear variable separation approach, new families of variable separation solutions (including solltary wave solutlons, periodic wave solutions and rational function solutions) with arbitrary functions [or the (2+ 1)-dimensional general/zed Broer-Kaup (GBK) system are derived. Usually, in terms of solitary wave solutions and/or rational function solutions, one can find abundant important localized excitations. However, based on the derived periodic wave solution in this paper, we reveal some complex wave excitations in the (2+1)-dimensional GBK system, which describe solitons moving on a periodic wave background. Some interesting evolutional properties for these solitary waves propagating on the periodic wave bactground are also briefly discussed.  相似文献   

2.
In this paper, we employ the bifurcation method of dynamical systems to study the solitary waves and periodic waves of a generalized Boussinesq equations. All possible phase portraits in the parameter plane for the travelling wave systems are obtained. The possible solitary wave solutions, periodic wave solutions and cusp waves for the general Boussinesq type fluid model are also investigated.  相似文献   

3.
Applying the extended mapping method via Riccati equation, many exact variable separation solutions for the (2&1 )-dimensional variable coefficient Broer-Kaup equation are obtained. Introducing multiple valued function and Jacobi elliptic function in the seed solution, special types of periodic semifolded solitary waves are derived. In the long wave limit these periodic semifolded solitary wave excitations may degenerate into single semifolded localized soliton structures. The interactions of the periodic semifolded solitary waves and their degenerated single semifolded soliton structures are investigated graphically and found to be completely elastic.  相似文献   

4.
李子良 《中国物理 B》2009,18(10):4074-4082
Higher-order Korteweg-de Vries (KdV)-modified KdV (mKdV) equations with a higher-degree of nonlinear terms are derived from a simple incompressible non-hydrostatic Boussinesq equation set in atmosphere and are used to investigate gravity waves in atmosphere. By taking advantage of the auxiliary nonlinear ordinary differential equation, periodic wave and solitary wave solutions of the fifth-order KdV--mKdV models with higher-degree nonlinear terms are obtained under some constraint conditions. The analysis shows that the propagation and the periodic structures of gravity waves depend on the properties of the slope of line of constant phase and atmospheric stability. The Jacobi elliptic function wave and solitary wave solutions with slowly varying amplitude are transformed into triangular waves with the abruptly varying amplitude and breaking gravity waves under the effect of atmospheric instability.  相似文献   

5.
The searching exact solutions in the solitary wave form of non-linear partial differential equations(PDEs play a significant role to understand the internal mechanism of complex physical phenomena. In this paper, we employ the proposed modified extended mapping method for constructing the exact solitary wave and soliton solutions of coupled Klein-Gordon equations and the(2+1)-dimensional cubic Klein-Gordon(K-G) equation. The Klein-Gordon equation are relativistic version of Schr¨odinger equations, which describe the relation of relativistic energy-momentum in the form of quantized version. We productively achieve exact solutions involving parameters such as dark and bright solitary waves, Kink solitary wave, anti-Kink solitary wave, periodic solitary waves, and hyperbolic functions in which severa solutions are novel. We plot the three-dimensional surface of some obtained solutions in this study. It is recognized that the modified mapping technique presents a more prestigious mathematical tool for acquiring analytical solutions o PDEs arise in mathematical physics.  相似文献   

6.
Soliton-type solutions of the complete unreduced system of transport equations describing the plane-parallel motions of an isotropic collisionless quasineutral plasma in a magnetic field with constant ion and electron temperatures are studied. The regions of the physical parameters for fast and slow magnetosonic branches, where solitons and generalized solitary waves—nonlocal soliton structures in the form of a soliton “core” with asymptotic behavior at infinity in the form of a periodic low-amplitude wave—exist, are determined. In the range of parameters where solitons are replaced by generalized solitary waves, soliton-like disturbances are subjected to decay whose mechanisms are qualitatively different for slow and fast magnetosonic waves. A specific feature of the decay of such disturbances for fast magnetosonic waves is that the energy of the disturbance decreases primarily as a result of the quasistationary emission of a resonant periodic wave of the same nature. Similar disturbances in the form of a soliton core of a slow magnetosonic generalized solitary wave essentially do not emit resonant modes on the Alfvén branch but they lose energy quite rapidly because of continuous emission of a slow magnetosonic wave. Possible types of shocks which are formed by two types of existing soliton solutions (solitons and generalized solitary waves) are examined in the context of such solutions.  相似文献   

7.
The(2+1)-dimension nonlocal nonlinear Schrodinger(NLS) equation with the self-induced parity-time symmetric potential is introduced, which provides spatially two-dimensional analogues of the nonlocal NLS equation introduced by Ablowitz et al. [Phys. Rev. Lett. 110(2013) 064105]. General periodic solutions are derived by the bilinear method. These periodic solutions behave as growing and decaying periodic line waves arising from the constant background and decaying back to the constant background again. By taking long wave limits of the obtained periodic solutions, rogue waves are obtained. It is also shown that these line rogue waves arise from the constant background with a line profile and disappear into the constant background again in the(x,y) plane.  相似文献   

8.
费金喜  郑春龙 《中国物理 B》2012,21(7):70304-070304
Periodic wave solutions and solitary wave solutions to a generalized (3+1)-dimensional Gross--Pitaevskii equation with time-modulated dispersion, nonlinearity, and potential are derived in terms of an improved homogeneous balance principle and a mapping approach. These exact solutions exist under certain conditions via imposing suitable constraints on the functions describing dispersion, nonlinearity, and potential. The dynamics of the derived solutions can be manipulated by prescribing specific time-modulated dispersions, nonlinearities, and potentials. The results show that the periodic waves and solitary waves with novel behaviors are similar to similaritons reported in other nonlinear systems.  相似文献   

9.
Periodic wave solutions and solitary wave solutions to a generalized (3+1)-dimensional Gross-Pitaevskii equation with time-modulated dispersion, nonlinearity, and potential are derived in terms of an improved homogeneous balance principle and a mapping approach. These exact solutions exist under certain conditions via imposing suitable constraints on the functions describing dispersion, nonlinearity, and potential. The dynamics of the derived solutions can be manipulated by prescribing specific time-modulated dispersions, nonlinearities, and potentials. The results show that the periodic waves and solitary waves with novel behaviors are similar to the similaritons reported in other nonlinear systems.  相似文献   

10.
A nonlinear evolution equation for wave propagation in bubbly liquids, taking into account viscosity and heat transfer, has been derived by Kudryashov and Sinelshchikov. In the case of no dissipation the authors have provided analytical solutions representing undistorted waves. These results are cast into a simpler form and studied in more detail. In addition to the wave profiles the corresponding phase curves are presented. Depending on some parameter the solutions represent solitary or periodic waves. Some of the periodic waves exhibit peaks or cusps. From the periodic waves a new type of “meandering” solutions is constructed.  相似文献   

11.
We present a theory of the existence and stability of traveling periodic and solitary space charge wave solutions to a standard rate equation model of electrical conduction in extrinsic semiconductors which includes effects of field-dependent impurity impact ionization. A nondimensional set of equations is presented in which the small parameter β = (dielectric relaxation time) / (characteristic impurity time) 1 plays a crucial role for our singular perturbation analysis. For a narrow range of wave velocities a phase plane analysis gives a set of limit cycle orbits corresponding to periodic traveling waves. while for a unique value of wave velocity we find a homoclinic orbit corresponding to a moving solitary space charge wave of the type experimentally observed in p-type germanium. A linear stability analysis reveals all waves to be unstable under current bias on the infinite one-dimensional line. Finally, we conjecture that solitary waves may be stable in samples of finite length under voltage bias.  相似文献   

12.
The 2-D generalized variable-coefficient Kadomtsev-Petviashvili-Burgers equation representing many types of acoustic waves in cosmic and/or laboratory dusty plasmas is reduced by the modified classical direct similarity reduction method to nonlinear ordinary differential equation of fourth-order. Using the extended Riccati equation mapping method for solving the reduced equation, many new shock wave, solitary wave and periodic wave solutions are obtained with some constraints between the variable coefficients. Finally, some physical interpretations for the obtained solutions as, bright and dark solitons, periodic solitary wave, and shock wave in dust plasma and quantum plasma are achieved.  相似文献   

13.
In this paper, we study the higher dimensional nonlinear Rossby waves under the generalized beta effect. Using methods of the multiple scales and weak nonlinear perturbation expansions [Q. S. Liu, et al., Phys. Lett. A 383 (2019) 514], we derive a new $(2+1)$-dimensional generalized Boussinesq equation from the barotropic potential vorticity equation. Based on bifurcation theory of planar dynamical systems and the qualitative theory of ordinary differential equations, the dynamical analysis and exact traveling wave solutions of the new generalized Boussinesq equation are obtained. Moreover, we provide the numerical simulations of these exact solutions under some conditions of all parameters. The numerical results show that these traveling wave solutions are all the Rossby solitary waves.  相似文献   

14.
毛杰健  杨建荣 《物理学报》2013,62(13):130205-130205
基于一般的浅水波方程, 根据大尺度正压大气的特点, 得到无量纲的控制大尺度大气的动力学非线性方程组. 利用多尺度法, 由无量纲的动力学方程组导出了扰动位势的非线性控制方程. 采用椭圆方程构造该扰动位势控制方程的解, 获得了扰动位势和速度的多周期波与冲击波(爆炸波) 并存的解析解. 扰动位势的解表明经向和纬向具有不同周期和波长的周期波, 且都受纬向孤波的调制; 速度的解表明大尺度大气流动存在气旋和反气旋周期性分布的现象. 关键词: 浅水波方程 大尺度正压大气 解析解 非线性波  相似文献   

15.
Yan-Ze Peng 《Pramana》2005,65(2):177-183
By means of the singular manifold method we obtain a general solution involving three arbitrary functions for the (2+1)-dimensional KdV equation. Diverse periodic wave solutions may be produced by appropriately selecting these arbitrary functions as the Jacobi elliptic functions. The interaction properties of the periodic waves are investigated numerically and found to be nonelastic. The long wave limit yields some new types of solitary wave solutions. Especially the dromion and the solitoff solutions obtained in this paper possess new types of solution structures which are quite different from the basic dromion and solitoff ones reported previously in the literature.  相似文献   

16.
黄文华 《中国物理 B》2009,18(8):3163-3168
A general solution, including three arbitrary functions, is obtained for a (2+1)-dimensional modified dispersive water-wave (MDWW) equation by means of the WTC truncation method. Introducing proper multiple valued functions and Jacobi elliptic functions in the seed solution, special types of periodic folded waves are derived. In the long wave limit these periodic folded wave patterns may degenerate into single localized folded solitary wave excitations. The interactions of the periodic folded waves and the degenerated single folded solitary waves are investigated graphically and found to be completely elastic.  相似文献   

17.
Third and fifth order nonlinear wave equations which arise in the theory of water waves possess solitary and periodic traveling waves. Solitary waves also arise in systems with dissipation and instability where a balance between these effects allows the existence of dissipative solitons. Here we search for a model equation to describe long wave dissipative solitons including fifth order dispersion. The equation found includes quadratic and cubic nonlinearities. For periodic solutions in a small box we characterize the rate of growth, and show that they do not blow up in finite time. Analytic solutions are constructed for special parameter values.  相似文献   

18.
A general solution including three arbitrary functions is obtained for the (2+1)-dimensional higher-order Broer-Kaup equation by means of WTC truncation method. Introducing proper multiple valued functions and Jacobi elliptic functions in the seed solution, special types of periodic folded waves are derived. In long wave limit these periodic folded wave patterns may degenerate into single localized folded solitary wave excitations. The interactions of the periodic folded waves and their degenerated single folded solitary waves are investigated graphically and are found to be completely elastic.  相似文献   

19.
In the materials of micro-structured, the propagation of wave modeling should take into account the scale of various microstructures. The different kinds solitary wave solutions of strain wave dynamical model are derived via utilizing exp\((-\phi(\xi))\)-expansion and extended simple equation methods. This dynamical equation plays a key role in engineering and mathematical physics. Solutions obtained in this work include periodic solitary waves, Kink and anti-Kink solitary waves, bell-shaped solutions, solitons, and rational solutions. These exact solutions help researchers for knowing the physical phenomena of this wave equation. The stability of this dynamical model is examined via standard linear stability analysis, which authenticate that the model is stable and their solutions are exact. Graphs are depicted for knowing the movements of some solutions. The results show that the current methods, by the assist of symbolic calculation, give an effectual and direct mathematical tools for resolving the nonlinear problems in applied sciences.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号