首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
计新  张寿 《量子光学学报》2007,13(2):98-103
我们提出一个利用腔QED技术控制传输任意两原子态的方案.在此方案中,我们选择一个GHZ态和一个EPR对作为量子通道.在控制者的帮助下,发送者可以把量子信息传送给接收者.在传输过程中,两对原子分别与两个全同单模场相互作用,同时两对原子分别由两个全同经典场驱动.该方案对腔衰变和热场不敏感,并且传输成功的几率为1.  相似文献   

2.
We have proposed an alternative scheme for teleportation of two-atom entangled state in cavity QED. It is based on the degenerate Raman interaction of a single-mode cavity field with a A-type three-level atom. The prominent feature of the scheme is that only one cavity is required, which is prior to the previous one. Moreover, the atoms need to be detected are reduced compared with the previous scheme. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized for teleportation of N-atom GHZ entangled states. The number of the atoms needed to be detected does not increase as the number of the atoms in GHZ state increases.  相似文献   

3.
We have proposed an alternative scheme for teleportation of two-atom entangled state in cavity QED. It is based on the degenerate Raman interaction of a single-mode cavity field with a ∧-type three-level atom. The prominent feature of the scheme is that only one cavity is required, which is prior to the previous one. Moreover, the atoms need to be detected are reduced compared with the previous scheme. The experimental feasibility of the scheme is discussed.The scheme can easily be generalized for teleportation of N-atom GHZ entangled states. The number of the atoms needed to be detected does not increase as the number of the atoms in GHZ state increases.  相似文献   

4.
A scheme is proposed for the controlled teleportation of an arbitrary two-atom state via special W-type entangled states and QED cavity. The scheme does not involve the direct joint Bell-state-measurement (BSM). We show that the quantum information is split into two parts~ thus the original atomic state cannot be perfectly restored by the receiver without the other agent's collaboration and classical communication. In addition, the physical realization of this scheme is not difficult.  相似文献   

5.
In this paper, we propose a scheme for the controlled teleportation of an arbitrary two-atom entangled state |φ12=a|gg12+b|ge12+c|eg12+d|ee12 in driven cavity QED. An arbitrary two-atom entangled state can be teleported perfectly with the help of the cooperation of the third side by constructing a three-atom GHZ entangled state as the controlled channel. This scheme does not involve apparent (or direct) Bell-state measurement and is insensitive to the cavity decay and the thermal field. The probability of the success in our scheme is 1.0.  相似文献   

6.
A probabilistic teleportation scheme for atomic stats via cavity QED [Phys. Rev. A 70 (2004) 054303] is revisited and accordingly some improvements are made.  相似文献   

7.
A probabilistic teleportation scheme for atomic state via cavity QED [Phys. Rev. A 70 (2004) 054303] is revisited and accordingly some improvements are made.  相似文献   

8.
We present an experimentally feasible scheme for teleportation of an arbitrary unknown two-atom entangled state by using two-atom Bell states in driven thermal cavities. In this scheme, the effects of thermal field and cavity decay can be all eliminated. Moreover, the present scheme is feasible according to current technologies.  相似文献   

9.
We present a physical scheme for realizing probabilistic teleportation of bipartite atomic states via cavity QED. This scheme requires only a nonmaximally entangled pair used as quantum channel, so we reduce the requirement of entanglement.  相似文献   

10.
Using a quantum channel composed of a two-atom and a three-atom nonmaximally entangled states, we present two schemes to teleport a three-atom GHZ class state via entanglement swapping in cavity QED with different success probabilities. The schemes can be respectively realized with the large-detuned vacuum cavities and with the large-detuned thermal cavities by separate atomic measurements after we choose appropriate atom-cavity-field interaction time.  相似文献   

11.
Using a quantum channel composed of a two-atom and a three-atom nonmaximally entangled states,we present two schemes to teleport a three-atom GHZ class state via entanglement swapping in cavity QED with different success probabilities. The schemes can be respectively realized with the large-detuned vacuum cavities and with the large-detuned thermal cavities by separate atomic measurements after we choose appropriate atom-cavity-field interaction time.  相似文献   

12.
计新  李克  张寿 《中国物理》2006,15(3):478-481
We propose a scheme for teleporting a two-atom entangled state in cavity quantum electrodynamics (QED). In the scheme, we choose a single Einstein--Podolsky--Rosen (EPR) pair as the quantum channel which is shared by the sender and the receiver. By using the atom--cavity-field interaction and introducing an additional atom, we can teleport the two-atom entangled state successfully with a probability of 1.0. Moreover, we show that the scheme is insensitive to cavity decay and thermal field.  相似文献   

13.
提出了一种外场驱动下在腔QED中实现任意两原子态隐形传送的方案.在隐形传送的过程中.以两原子最大纠缠态作为量子通道,不用考虑腔场耗散和外界热场环境的影响.在传送过程中包含着对原子的Bell基测量,但不需要直接进行Bell基测量,而且最终能成功实现传送的几率为1.0.同时这种方案也可以用来传送未知的三原子GHZ态,传送的几率也为1.0.  相似文献   

14.
In this paper, a scheme is proposed for realization of two-qubit controlled-not gates and teleportation of an entangled state of atom-cavity. In this scheme, applying hyperfine levels of atom, we consider A-type three-level atom interacting resonantly or nonresonantly with cavity field that is prepared in σ- polarized. We consider the experimental feasibility of this scheme and compare our results with other schemes.  相似文献   

15.
We propose an experimentally feasible teleportation scheme with three-atom W-class state, which was first proposed by Agrawal and Pati [P. Agrawal and A. Pati, Phys. Rev. A 74 (2006) 062320 ], in cavity QED. In this scheme atoms interact simultaneously with a nonresonant cavity and there is no energy exchange between the atoms and the cavity. Thus it is insensitive to the cavity decay, which is of importance in view of experiment.  相似文献   

16.
The scheme for probabilistic teleportation of an arbitrary three-particle state is proposed. By using single qubit gate and three two-qubit gates, efficient quantum logic networks for probabilistic teleportation of an arbitrary three-particle state are constructed.  相似文献   

17.
The scheme for probabilistic teleportation of an arbitrary three-particle state is proposed. By using single qubit gate and three two-qubit gates, efficient quantum logic networks for probabilistic teleportation of an arbitrary three-particle state are constructed.  相似文献   

18.
We put forward an experimentally feasible protocol for realizing a perfect teleportation by using a class of W-state in QED. The simple way of generating the entangled channel and distinguishing the measurement bases is the distinct feature of our scheme. In addition, the probability of teleportation is up to 100%. The scheme can be implemented by the present cavity QED techniques.  相似文献   

19.
We propose an experimentally feasible teleportation scheme with three-atom W-class state, which was first proposed by Agrawal and Pati [P. Agrawal and A. Pati, Phys. Rev. A 74 (2006) 062320], in cavity QED. In this scheme atoms interact simultaneously with a nonresonant cavity and there is no energy exchange between the atoms and the cavity. Thus it is insensitive to the cavity decay, which is of importance in view of experiment.  相似文献   

20.
We study a special two-atom entanglement case in assumed cavity QED experiment in which only one atom effectively exchanges a single photon with a cavity mode. We compute two-atom entanglement under position-dependent atomic resonant dipole-dipole interaction (RDDI) for large interatomic separation limit. We show that the RDDI, even t, hat which is much smaller than the maximal atomic Rabi frequency, can induce distinct diatom entanglement. The peak entanglement reaches a maximum when RDDI strength can compare with the Rabi frequency of an atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号