首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Wang Y  Chen H  He Q  Soper SA 《Electrophoresis》2008,29(9):1881-1888
A fully integrated polycarbonate (PC) microchip for CE with end-channel electrochemical detection operated in an amperometric mode (CE-ED) has been developed. The on-chip integrated three-electrode system consisted of a gold working electrode, an Ag/AgCl reference electrode and a platinum counter electrode, which was fabricated by photo-directed electroless plating combined with electroplating. The working electrode was positioned against the separation channel exit to reduce post-channel band broadening. The electrophoresis high-voltage (HV) interference with the amperometric detection was assessed with respect to detection noise and potential shifts at various working-to-reference electrode spacing. It was observed that the electrophoresis HV interference caused by positioning the working electrode against the channel exit could be diminished by using an on-chip integrated reference electrode that was positioned in close proximity (100 microm) to the working electrode. The CE-ED microchip was demonstrated for the separation of model analytes, including dopamine (DA) and catechol (CA). Detection limits of 132 and 164 nM were achieved for DA and CA, respectively, and a theoretical plate number of 2.5x10(4)/m was obtained for DA. Relative standard deviations in peak heights observed for five runs of a standard solution containing the two analytes (0.1 mM for each) were 1.2 and 3.1% for DA and CA, respectively. The chip could be continuously used for more than 8 h without significant deterioration in analytical performance.  相似文献   

2.
Wang Y  Luo J  Chen H  He Q  Gan N  Li T 《Analytica chimica acta》2008,625(2):180-187
A novel chip-based flow injection analysis (FIA) system has been developed for automatic, rapid and selective determination of dopamine (DA) in the presence of ascorbic acid (AA). The system is composed of a polycarbonate (PC) microfluidic chip with an electrochemical detector (ED), a gravity pump, and an automatic sample loading and injection unit. The selectivity of the ED was improved by modification of the gold working microelectrode, which was fabricated on the PC chip by UV-directed electroless gold plating, with a self-assembled monolayer (SAM) of 3-mercaptopropionic acid (MPA). Postplating treatment methods for cleaning the surface of electroless gold microelectrodes were investigated to ensure the formation of high quality SAMs. The effects of detection potential, flow rate, and sampling volume on the performance of the chip-based FIA system were studied. Under optimum conditions, a detection limit of 74 nmol L−1 for DA was achieved at the sample throughput rate of 180 h−1. A RSD of 0.9% for peak heights was observed for 19 runs of a 100 μmol L−1 DA solution. Interference-free determination of DA could be conducted if the concentration ratio of AA–DA was no more than 10.  相似文献   

3.
The coulometric efficiency (Ceff) of an amperometric detector integrated on PDMS/glass capillary electrophoresis microfluidic device (microchip) has been enhanced by in-channel electrochemical modification. In-channel electrochemical deposition of gold particles was performed in order to vertically increase the surface area of the Au sensing microelectrode. The roughness of the electrodes was characterized using scanning electron microscopy and profilometric analysis. The degree of electrode modification was also characterized by roughness factor determination. Separation processes including detection potential was optimized and the analytical performance of the microchip was tested using a mixture of dopamine (DA) and catechol (CA). The modified electrochemical detector provided well-resolved separation of DA and CA in less than 60 s with enhanced sensitivity; no peak broadening was observed. The limit of detection using in-channel modification of working electrode for DA and CA are 60 and 110 nM, respectively. Thus, in-channel electrochemical deposition of metallic particles should be used to enhance the Ceff of integrated amperometric detection of analytes with good redox properties in order to obtain lower LODs.  相似文献   

4.
Du Y  Yan J  Zhou W  Yang X  Wang E 《Electrophoresis》2004,25(21-22):3853-3859
We developed an electrochemical detector on a hybrid chip for the determination of glucose in human plasma. The microchip system described in this paper consists of a poly(dimethylsiloxane) (PDMS) layer containing separation and injection channels and an electrode plate. The copper microelectrode is fabricated by selective electroless deposition. The fabrication of the decoupler is performed by platinum electrochemical deposition on the metal film formed by electroless deposition. Factors influencing the performance, including detection potential, separation field strength, and buffer concentration, were studied. The electrodes exhibited good stability and durability in the analytical procedures. Under optimized detection conditions, glucose responded linearly from 10 microM to 1 mM. Finally, glucose in human plasma from three healthy individuals and two diabetics was successfully determined, giving a good prospect for a new clinical diagnostic instrument.  相似文献   

5.
This paper presents a capillary electrophoresis poly(methyl methacrylate) (PMMA) based microchip for electrochemical detection applications featuring embedded gold nanoelectrode ensemble (GNEE) working and decoupler electrodes. In fabricating the microchip, the GNEE films are pressed directly onto the metallic electrode structures using a hot embossing technique, and the microfluidic channels are then sealed using a low-temperature azeotropic solvent bonding method. The detection performance of the microchip is evaluated using dopamine and catechol analytes for illustration purposes. The experimental results show that the GNEE working electrode provides a significantly higher signal response than that obtained from a bulk gold electrode when applied to the detection of dopamine analyte. Compared to a conventional bulk palladium decoupler electrode, the GNEE decoupler electrode reduces both the amplitude of the charge current (3.5 nA vs. 18.7 nA) and the baseline drift at higher separation voltages. The measured baseline current drift for the microchip equipped the proposed GNEE decoupler electrode is around three times smaller than the microchip with the palladium decoupler electrode under the applied separation electric field from 40 V/cm to 240 V/cm. Finally, when detecting a mixture of 1mM dopamine and 1mM catechol, the calculated signal response of the microchip with a GNEE decoupler electrode is approximately five times higher than that obtained from a microchip with a bulk Pd decoupler electrode, resulting in the detection limit of 1 microM for the proposed GNEE-based microchip device. Overall, the results indicate that the proposed capillary electrophoresis-electrochemical detection (CE-ED) microchip with embedded GNEE working and decoupler electrodes provides an ideal solution for sample detection in lab-on-a-chip and micro total analysis applications.  相似文献   

6.
Wu Y  Lin JM  Su R  Qu F  Cai Z 《Talanta》2004,64(2):338-344
An end-channel amperometric detector with a guide tube for working electrode was designed and integrated on a home-made glass microchip. The guide tube was directly patterned and fabricated at the end of the detection reservoir, which made the fixation and alignment of working electrode relatively easy. The fabrication was carried out in a two-step etching process. A 30 μm carbon fiber microdisk electrode and Pt cathode were also integrated onto the amperometric detector. The characteristics and primary performance of the home-made microchip capillary electrophoresis (MCCE) were investigated with neurotransmitters. The baseline separation of dopamine (DA), catechol (CA) and epinephrine (EP) was achieved within 80 s. Separation parameters such as injection time, buffer components, pH of the buffer were studied. Relative standard deviations of not more than 6.0% were obtained for both peak currents and migration times. Under the selected separation conditions, the response for DA was linear from 5 to 200 μM and from 20 to 800 μM for CA. The limits of detection of DA and CA were 0.51 and 2.9 μM, respectively (S/N=3).  相似文献   

7.
利用飞秒激光双光子微纳加工技术与化学镀工艺制备了三维金属微弹簧结构.采用扫描电子显微镜(SEM)及选区电子能谱(EDS)对镀层进行了表征,当化学镀时间为15 min时,所得到的镀层厚度约为130 nm.对不同电镀时间下获得的镀层电阻率进行了测定,实验结果表明,当电镀时间为35 min时得到的镀层电阻率约为80×10-9 Ω·m,仅为银块体材料电阻率16×10-9 Ω·m的5倍.利用这种方法,我们制备了总长度为28.75 μm、周期为2.93 μm的悬空金属弹簧结构,其中弹簧圈数为9圈,直径为6 μm,弹簧线分辨率为1.17 μm.文中所述的将双光子微纳加工技术与化学镀技术相结合的方法可以实现任意三维微金属结构与器件的制备,在微光学器件、微机电系统(MEMS)及微传感器等领域有着广泛的应用前景.  相似文献   

8.
吴友谊  屈锋  林金明 《中国化学》2005,23(2):155-159
An end-channel amperometric detector with a guide tube for working electrode was designed and integrated on a home-made glass microchip. The guide tube was directly patterned and fabricated at the end of the detection reservoir, which made the fixation and alignment of working electrode relatively easy. The fabrication was carried out in a two-step etching process. A 30 μm carbon fiber microdisk electrode and Pt cathode were also integrated onto the amperometric detector. The baseline separation of dopamine (DA), catechol (CA) and epinephrine (EP) was achieved within 80 s. Relative standard deviations of not more than 5.2% were obtained for both peak currents and migration times of DA and CA (n=5). Using standard adding method, DA in tLrine and plasma samples was detected. The recoveries were in the range of 83%—103%.  相似文献   

9.
Electroactive intercalators for DNA analysis on microchip electrophoresis   总被引:1,自引:0,他引:1  
Miniaturized analytical systems, especially microchip CE (MCE), are becoming a promising tool for analytical purposes including DNA analysis. These microdevices require a sensitive and miniaturizable detection system such as electrochemical detection (ED). Several electroactive DNA intercalators, including the organic dye methylene blue (MB), anthraquinone derivatives, and the metal complexes Fe(phen)3 2+ and Ru(phen)3 2+, have been tested for using in combination with thermoplastic olefin polymer of amorphous structure (Topas) CE-microchips and ED. Two end-channel approaches for integration of gold wire electrodes in CE-ED microchip were used. A 250 microm diameter gold wire was manually aligned at the outlet of the separation channel. A new approach based on a guide channel for integration of 100 and 50 microm diameter gold wire has been also developed in order to reduce the background current and the baseline noise level. Modification of gold wire electrodes has been also tested to improve the detector performance. Application of MCE-ED for ssDNA detection has been studied and demonstrated for the first time using the electroactive dye MB. Electrostatic interaction between cationic MB and anionic ssDNA was used for monitoring the DNA on microchips. Thus, reproducible calibration curves for ssDNA were obtained. This study advances the feasibility of direct DNA analysis using CE-microchip with ED.  相似文献   

10.
Hao Z  Chen H  Zhu X  Li J  Liu C 《Journal of chromatography. A》2008,1209(1-2):246-252
Amorphous poly(ethylene terephthalate) (PET), which possess a low softening temperature (T(s)=75 degrees C), was exploited to fabricate the electrophoresis chip with an integrated gold electrode for amperometric detection, with emphases being focused on the PET surface modification via UV light and air plasma. Both UV irradiation and plasma treatment were found to be able to improve the surface wettability, enhance the supported electroosmotic flow (EOF), and increase thermal bonding strength of PET sheets, with the latter being more efficient and less time-consuming than the former in the surface modification. Upon treated with plasma for 2 min, the PET sheets could be thermally bonded at 65 degrees C. T-peer test showed that the bonding strength increased from 10 g/cm for native PET sheets to 1250 g/cm for the plasma treated sheets when chips were bonded at the softening point, Attenuated-total-internal-reflection spectrum showed that, after being exposed to the UV light, carboxylic groups site-selectively formed in the UV-exposed region on PET surface. These UV-induced carboxylic groups were further utilized as the scaffold for preparation of micro-gold electrode via electroless gold plating. By using this established UV-directed electroless plating and the plasma-assisted thermal bonding techniques, the full PET electrophoresis chip with an integrated micro-gold electrode could be fabricated in common chemistry laboratory without the need of clean rooms. The fabricated PET chips were demonstrated for separation and detection of model analytes of dopamine (DA) and catechol (CA). Satisfactory resolution of the two analytes was achieved within 40s, and detection limits of 0.87 microM and 1.28 microM for DA and CA were obtained, respectively.  相似文献   

11.
Gold tubes membrane with novel morphology was fabricated on glass substrate by electroless plating gold on ZnO crystals array, and then annealing and removing the ZnO template by acid erosion. The morphology and size of the gold tubes membrane were decided by ZnO template. Hexagonal gold tubes membrane and double-wall gold tubes membrane were obtained, which enjoys some potential usage in electrode modification or chemical separation due to their huge surface area and unique geometric structure. SEM images show that those gold tubes in membrane are hollowed hexagonal columns with a closed head and an open bottom. Further researches found that two main factors determined the success of replication: the gold seeds (4-5 nm in diameter) immobilized on ZnO surface through APTMS (3-Aminopropyl-trimethoxysilane) before gold electroless plating and the annealing condition after electroless plating.  相似文献   

12.
A method to integrate a carbon microelectrode with a microfabricated palladium decoupler for use in microchip capillary electrophoresis (CE) is detailed. As opposed to previous studies with decouplers for microchip CE, the working electrode material, which is made by micromolding of a carbon ink, is different from the decoupling electrode material (palladium). The manner in which the working electrode is made does not add additional etching or lithographic steps to the fabrication of the glass electrode plate. The hybrid poly(dimethylsiloxane)/glass device was characterized with fluorescence microscopy and by monitoring the CE-based separation of dopamine. Hydrodynamic voltammograms exhibited diffusion-limited currents occurring at potentials above +1.0 V. It was also shown that the half-wave potential does not shift as the separation potential is changed, as is the case in nondecoupled systems. Gated injections of dopamine in a 25 mM boric acid buffer (pH 9.2) showed a linear response from 200 to 5 microM (r2 = 0.9992), with a sensitivity of 5.47 pA/microM and an estimated limit of detection of 2.3 microM (0.621 fmol, S/N = 3). This is the first report of coupling a carbon electrode with a decoupler in microchip CE.  相似文献   

13.
关利浩  王超  张望  蔡雨露  李凯  林雨青 《电化学》2019,25(2):244-251
用微电极进行活体检测神经化学物质属于侵入式分析,会对脑组织产生不可避免的损伤,进而在生理上产生一些信号干扰检测过程. 减小电极的尺寸对于减小对脑组织的损伤非常重要. 该研究报道了一种新型制备金纳米电极的方法并将其用于活体鼠脑内多巴胺分析研究. 这种金纳米电极的制备过程包含两步:1)通过离子溅射在毛细管的尖端覆盖一层金种子;2)把覆盖有金种子的毛细管浸入氯金酸和盐酸羟胺混合溶液中湿法沉积生成连续导电金膜. 制备好的纳米电极尖端约300 ~ 400 nm. 该金纳米电极可以应用于多巴胺的检测,并且在多巴胺浓度1.0 ~ 56.0 μmol·L-1范围内有很好的线性响应,最低检测限低至0.14 μmol·L-1(信噪比=3). 该金纳米电极具有优异的电化学性能,可以成功的应用于检测鼠脑纹状体儿茶酚胺的释放.  相似文献   

14.
In this paper, we present gold-plating polycarbonate (PC) microchannels. The fabrication of the gold microfluidic channels is achieved by tuning the sequence of reagent insertion into milled and closed submillimeter PC system channels. The resulting gold surface can be utilized in many applications where the benefits of microfluidics, (bio)chemistry of surfaces, and electrochemistry can be combined. Here, we combine the advantages of electrochemistry with microfluidics by mixing the gold sensor with microfluidics. This approach differs from the classic one – the sensor will undergo modifications (e. g., shape and size) depending on the specific scientific problem and will be designed individually; hence its characteristics will be changed. Our goal in this work is to indicate new possibilities for combining two methodologies – electrochemistry and microfluidics. In our work, we emphasize that it confirms the validity of our chosen concept (proof-of-concept). In this work, we present one such application, the use of a gold microfluidic channel as a working electrode (WE). We describe the microchip‘s construction and electrochemical characterization, including the gold flow-through WE, the Ag/AgCl wire pseudo-reference, and the Pt auxiliary electrode. The measured current is the result of the flow through a rectangular duct of the gold microchannel electrode embedded in the four walls of the chip.  相似文献   

15.
We report on a simple amperometric detector for use in microchip capillary electrophoresis. A disposable syringe serves as the electrode holder that is fixed at the outlet of the separation channel. A carbon paste electrode is used to detect dopamine (DA) and catechol (CA) after electrophoretic separation. The two model analytes were well separated within 60 s. The response is linear in the concentration range from 4 to 500???M, and the detection limit is 1.2???M for DA (S/N = 3:1). The relative standard deviations of the inter-run and inter-electrode peak currents, respectively, are 2.8% and 5.7% for DA, and 3.9% and 6.5% for CA. Favorable column efficiency (expressed by the theoretical plate number which is 5.3 × 104 m-1 for DA) is achieved. The method was successfully applied to the separation and detection of 3-aminophenol (3-AP) in an injection powder containing sodium 4-aminosalicylate. The detection limit of 3-AP is as low as 1.7???M, which meets the demand of the impurity test. The facile assembly allows convenient replacement of working electrodes and improves the longevity of the microanalytical system.
Figure
Voltammetric behaviors of 3-AP and 4-AS at carbon paste electrode (CPE), and microchip electrophoresis-amperometry with CPE for the two analytes.  相似文献   

16.
A new method for mass fabrication of silver ink conductivity detector electrodes for poly(methylmethacrylate) (PMMA) microchip electrophoretic systems has been developed based on screen‐printing technology. Printing of silver conductivity electrodes was performed through a patterned stencil on thin PMMA sheets. Following the electrode fabrication, the PMMA sheets are cut into cover sheets, and are aligned and sealed to the channel plate thus establishing a complete microchip separation device. The effects of the electrode width and spacing on the response and resolution have been investigated and the optimized electrode performance was compared to commonly used aluminum electrodes in the determination of ammonium, methyl ammonium, and sodium. The utility of the screen‐printed contactless conductivity detector (SPCCD) electrodes is further demonstrated for the separation and detection of organic acids with excellent reproducibility (RSD values of 3.7% and 4.1% for oxalate and tartrate, respectively). The thick‐film fabrication of the electrode material demonstrates the ability to mass‐fabricate detection devices with total process of device fabrication requiring less than 4 h (including the fabrication of channel plate, cover sheet with the electrodes, and subsequent bonding). The fabrication method described here is convenient and does not compromise the detector performance, hence offers great promise for producing single use field deployable analytical microsystems.  相似文献   

17.
Functionalization of gold cysteamine (Au? CA) self‐assembled monolayer with 4‐formylphenylboronic acid (BA) via Schiff's base formation, through in situ method to fabricate Au‐CA‐BA electrode is presented and described. The fabricated electrode was used as a novel sensor for accumulation and determination of dopamine (DA). The accumulation of DA as a diol on the topside of Au‐CA‐BA as a Lewis acid, was performed via esterification (Au? CA? BA? DA), and followed for determination of DA. Functionalization, characterization, and determination steps were probed by electrochemical methods like cyclic voltammetry and electrochemical impedance spectroscopy. The data will be presented and discussed from which a new sensor for DA is introduced.  相似文献   

18.
A chip-type thin-layer radial flow cell was developed as an amperometric detector for capillary electrophoresis. We fabricated a carbon film-based interdigitated ring-shaped array (IDRA) microelectrode with a 2 microm bandwidth and an almost 1 microm gap on a glass plate and used it as a working electrode. A fused-silica capillary was arranged above the IDRA electrode using a guide hole drilled through the acryl plate that formed the flow cell lid. A flow channel for use in connecting the outlet capillary was also fabricated in the acryl plate. We characterized the analytical performance of the IDRA electrode in the microchip flow cell in terms of linear concentration range, sensitivity and concentration detection limit. We achieved a collection efficiency and catechol redox cycle at the IDRA microelectrode of 65% and 1.71, respectively, and thus a high sensitivity and low detection limit of 392.9 pA/microM and 15 nM for dopamine hydrochloride. We examined the reproducibility of the detector and found that the run-to-run and detector-to-detector relative standard deviations were both less than 10%.  相似文献   

19.
This paper describes the fabrication and evaluation of a chemically modified carbon ink microelectrode to detect thiols of biological interest. The detection of thiols, such as homocysteine and cysteine, is necessary to monitor various disease states. The biological implications of these thiols generate the need for miniaturized detection systems that enable portable monitoring as well as quantitative results. In this work, we utilize a microchip device that incorporates a micromolded carbon ink electrode modified with cobalt phthalocyanine to detect thiols. Cobalt phthalocyanine (CoPC) is an electrocatalyst that lowers the potential needed for the oxidation of thiols. The CoPC/carbon ink composition was optimized for the micromolding method and the resulting microelectrode was characterized with microchip-based flow injection analysis. It was found that CoPC lowers the overpotential for thiols but, as compared to direct amperometric detection, a pulsed detection scheme was needed to constantly regenerate the electrocatalyst surface, leading to improved peak reproducibility and limits of detection. Using the pulsed method, cysteine exhibited a linear response between 10-250 microM (r(2) = 0.9991) with a limit of detection (S/N = 3) of 7.5 microM, while homocysteine exhibited a linear response between 10-500 microM (r(2) = 0.9967) with a limit of detection of 6.9 microM. Finally, to demonstrate the ability to measure thiols in a biological sample using a microchip device, the CoPC-modified microelectrode was utilized for the detection of cysteine in the presence of rabbit erythrocytes.  相似文献   

20.
A biocomposite material of tyrosinase and poly(3,4‐ethylenedioxythiophene) was electrodeposited onto gold (Au) disk microelectrode arrays and Au interdigitated microband electrode arrays (IDEs) by using a combination of sinusoidal voltages and microgravimetric method to construct amperometric biosensors for dopamine (DA). The main advantage of this new strategy consists in a reliable enzyme immobilization and in additional information related to the electropolymerization process. The determination of DA was successfully achieved in pharmaceutical formulations. The best analytical performances, in terms of the lowest limit of detection of 6×10?7 M DA and highest recovery and stability, were obtained for IDEs based biosensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号