首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Special curves, called shock polars, are frequently used to determine the state of the gas behind an oblique shock wave from known parameters of the oncoming flow. For a perfect gas, these curves have been constructed and investigated in detail [1]. However, for the solution of problems associated with gas flow at high velocities and high temperatures it is necessary to use models of gases with complicated equations of state. It is therefore of interest to study the properties of oblique shocks in such media. In the present paper, a study is made of the form of the shock polars for two-parameter media with arbitrary equation of state, these satisfying the conditions of Cemplen's theorem. Some properties of oblique shocks in such media that are new compared with a perfect gas are established. On the basis of the obtained results, the existence of triple configurations in steady supersonic flows obtained by the decay of plane shock waves is considered. It is shown that D'yakov-unstable discontinuities decompose into an oblique shock and a centered rarefaction wave, while spontaneously radiating discontinuities decompose into two shocks or into a shock and a rarefaction wave.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 147–153, November–December, 1982.  相似文献   

2.
A plane time-dependent flow generated by the interaction between a normal shock and a low-density gas region occupying a quarter of the plane is theoretically investigated. Numerical simulation is performed on the basis of the Euler equations. It is established that after the shock has come in contact with the low-density region two-dimensional self-similar flows of different type can develop. On regular interaction the original shock is refracted on the low-density region with the matching of the accelerated and original shock and the refracted contact discontinuity at a common point. On irregular interaction a complicated flow occurs; it includes curved and oblique shocks, a contact discontinuity with points of inflection, multiple matching points, a high-pressure jet, and a layered vortex. The jet and vortex structures are investigated in detail. The tendency of the gasdynamic structure development with variation in the control parameters of the problem is determined. A simplified, near-analytical technique for estimating the slopes of the main shocks and the gas parameters behind them is proposed.  相似文献   

3.
The flow field in the neighborhood of the three-dimensional intersection of two shocks of different families is investigated when in the plane perpendicular to the line of intersection the flow velocity component is subsonic behind at least one of the departing shocks. In the plane case these flows are not realized. The boundary of the domain of the key parameters for which these flows are possible is determined. The characteristics of the flow field are determined when: (1) behind the departing shocks the flow is homogeneous, and (2) the velocity vectors behind the departing and arriving shocks are parallel to a single plane which contains the intersection line. The flow in Mach-type shock intersection in the neighborhood of the intersection lines (triple points in the plane) is a particular case of the problem considered. It is shown that Mach-type shock intersection is not possible when the intensity of the arriving shocks is less than for their steady-state Mach intersection in the calculation plane. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 137–143, November–December, 1998.  相似文献   

4.
The authors consider the problem of supersonic unsteady flow of an inviscid stream containing shock waves round blunt shaped bodies. Various approaches are possible for solving this problem. The parameters in the shock layer on the axis of symmetry have been determined in [1, 2] by using one-dimensional theory. The authors of [3, 4] studied shock wave diffraction on a moving end plane and wedge, respectively, by the through calculation method. This method for studying flow around a wedge with attached shock was also used in [5]. But that study, unlike [4], used self-similar variables, and so was able to obtain a clearer picture of the interaction. The present study gives results of research into the diffraction of a plane shock wave on a body in supersonic motion with the separation of a bow shock. The solution to the problem was based on the grid characteristic method [6], which has been used successfully to solve steady and unsteady problems [7–10]. However a modification of the method was developed in order to improve the calculation of flows with internal discontinuities; this consisted of adopting the velocity of sound and entropy in place of enthalpy and pressure as the unknown thermodynamic parameters. Numerical calculations have shown how effective this procedure is in solving the present problem. The results are given for flow round bodies with spherical and flat (end plane) ends for various different values of the velocities of the bodies and the shock waves intersected by them. The collision and overtaking interactions are considered, and there is a comparison with the experimental data.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 141–147, September–October, 1984.  相似文献   

5.
The transition from regular to Mach interaction is investigated in connection with the interaction of two plane weak or moderate shock waves of different intensity in a two-phase gas-liquid medium over the entire range of gas contents. A nonmonotonic dependence of the transition limit and the flow parameters on the gas content is detected. The investigation extends the results of [1] corresponding to the reflection of a shock wave from a wall. At intermediate gas contents in the case of opposing shock waves, analogous to the normal reflection of a shock wave from a solid wall, the results are in agreement with [2]. In the case of weak shock waves non-linear asymptotic expansions [3] are employed. In the extreme cases of single-phase media the results coincide with the findings of [3, 4]. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 172–174, November–December, 1986.  相似文献   

6.
Some examples of flows with separation zones andmovable contact discontinuities obtained as a result of the numerical integration of the time-dependent equations for an ideal gas are presented. The examples concern a steady annular separation zone on the blunt nose of a body in a supersonic flow, periodic shedding of unsteady discontinuities from a cylinder in a steady uniform subsonic flow with a supercritical Mach number, and the complicated deformation of a contact (tangential) discontinuity, namely, the boundaries of a two-dimensional jet, either subsonic or supersonic, flowing into a cocurrent subsonic low-velocity flow. A multiple increase in the difference grid capacity in the numerical integration of the Euler equations indicates the absence of a noticeable scheme viscosity effect in the examples calculated. The inviscid nature of the separation flows obtained is also confirmed by their well-known counterparts constructed in the ideal incompressible fluid approximation. The time-average velocity fields of the two-dimensional jet and the intensity of its sound field are in reasonable agreement with the available data.  相似文献   

7.
The systematic development of the theory of shock reflection from a solid wall started in [1]. Regular reflection and a three-shock configuration originating in Mach reflection were considered there under the assumption of homogeneity of the domains between the discontinuities and, therefore, of rectilinearity of these latter. The difficulties of the theoretical study include the essential nonlinearity of the process as well as the instability of the tangential discontinuity originating during Mach reflection. Analytic solutions of the problem in a linear formulation are known for a small wedge angle or a weak wave (see [2–4], for example). The solution in a nonlinear formulation has been carried out numerically in [5, 6] for arbitrary wedge angles and wave intensities. Since the wave was nonstationary, the internal flow configuration is difficult to clarify by means of the constant pressure and density curves presented. A formulation of the problem for the complete system of gasdynamics equations in self-similar variables is given in [7] and a method of solution is proposed but no results are presented. Difficulties with the instability of the contact discontinuity are noted. The problem formulation in this paper is analogous to that proposed in [7]. However, a method of straight-through computation without extraction of the compression shocks in the flow field is selected to compute the discontinuous flows. The shocks and contact discontinuities in such a case are domains with abrupt changes in the gasdynamics parameters. The computations were carried out for a broad range of interaction angles and shock intensities. The results obtained are in good agreement with the analytical solutions and experimental results. Information about the additional rise in reflection pressure after the Mach foot has been obtained during the solution.  相似文献   

8.
Symmetry preserving difference schemes which are found on the basis of the Lie-group theory for partial differential equations applied to their first differential approximations are used to simulate the evolution and reflection of shock waves in a cubical cavity with rigid walls and walls with outflow boundary conditions. The explicit difference scheme was used for a shock capturing technique to find and trace the discontinuities in the flow field. The numerical model is based on the strong conservative form of the three-dimensional time-dependent Euler equations with an equation of state for an ideal gas. The three-dimensional time-dependent shock waves which are created by a centered gas volume under high pressure interact with the plane walls of the cavity and lead to focusing effects after the explosion. To follow the propagation of strong plane or spherical shock waves the shock capturing method was proved to be sufficient concerning the spatial resolution of the discontinuities. When interacting with the rigid walls of the cavity the shock waves are assumed to be reflected specularly and to interact with shock waves and contact discontinuities moving from the center to the edges and corners of the cavity. The symmetry preserving character of the invariant difference scheme under use was proved numerically by calculations over long time. No significant deviation of the symmetry character of the imposed initial distribution was found. Additionally, a numerical analysis of the conservation of energy in the cube was performed to find the behavior of the energy in time.  相似文献   

9.
Tangential discontinuities [1] are introduced in solving several transient and steady-state problems of gas dynamics. These discontinuities are unstable [2] as a result of the effects of viscosity and thermal conductivity. Therefore it is advisable to replace the tangential discontinuity by a mixing region and account for its interaction with the inviscid flows, establishing on the boundaries of this region the conditions of vanishing friction stress and equality of the velocity and temperature components to the corresponding velocity and temperature components of the inviscid flows. This formulation improves the accuracy of the solution of such problems by posing them as problems with irregular reflection and intersection of shock waves [1].The consideration of the interaction of unsteady turbulent mixing regions with the inviscid flow also permits the formulation of several problems in which the effects of viscosity lead to complete rearrangement of the flow pattern (the lambda-configuration) with the interaction of the reflected shock wave with the boundary layer in the shock tube [3,4], the formation of zones of developed separation ahead of obstacles, etc.).In this connection, §1 presents an analysis of the self-similar solutions of the unsteady turbulent mixing equations (a corresponding analysis of the laminar mixing equations which coincide with the boundary layer equations is presented in [1]). It is shown that these self-similar solutions describe, along with the several problems noted above, the problems of the formation of steady jets and mixing zones in the base wake.As an example, §2 presents, within the framework of the proposed schematization, an approximate solution of the problem of the interaction of a shock wave reflected from a semi-infinite wall with the boundary layer on a horizontal plate behind the incident shock wave. The results obtained are applied to the analysis of reflection in a shock tube. Computational results are presented which are in qualitative agreement with experiment [3, 4].  相似文献   

10.
We consider the direct problem in the theory of the axisymmetric Laval nozzle (including sonic transition) for the steady flow of an inviscid and nonheat-conducting gas of finite electrical conductivity. The problem is solved by numerical integration of the equations of unsteady gas flow using an explicit difference scheme that was proposed by Godunov [1,2], and was used to calculate steady and unsteady flows of a nonconducting gas in nozzles by Ivanov and Kraiko [3]. The subsonic and the supersonic flows of a conducting gas in an axisymmetric channel when there is no external electric field, the magnetic field is meridional, and the magnetic Reynolds numbers are small have previously been completely investigated. Thus, Kheins, Ioller and Élers [4] investigated experimentally and theoretically the flow of a conducting gas in a cylindrical pipe when there is interaction between the flow and the magnetic field of a loop current that is coaxial with the pipe. Two different approaches were used in the theoretical analysis in [4]: linearization with respect to the parameter S of the magnetogasdynamic interaction and numerical calculation by the method of characteristics. The first approach was used for weakly perturbed subsonic and supersonic flows and the solutions obtained in analytic form hold only for small S. This is the approach used by Bam-Zelikovich [5] to investigate subsonic and supersonic jet flows through a current loop. The numerical calculations of supersonic flows in a cylindrical pipe in [4] were restricted to comparatively small values of S since, as S increases, shock waves and subsonic waves appear in the flow. Katskova and Chushkin [6] used the method of characteristics to calculate the flow of the type in the supersonic part of an axisymmetric nozzle with a point of inflection. The flow at the entrance to the section of the nozzle under consideration was supersonic and uniform, while the magnetic field was assumed to be constant and parallel to the axis of symmetry. The plane case was also studied in [6]. The solution of the direct problem is the subject of a paper by Brushlinskii, Gerlakh, and Morozov [7], who considered the flow of an electrically conducting gas between two coaxial electrodes of given shape. There was no applied magnetic field, and the induced magnetic field was in the direction perpendicular to the meridional plane. The problem was solved numerically in [7] using a standard process. However, the boundary conditions adopted, which were chosen largely to simplify the calculations, and the accuracy achieved only allowed the authors [7] to make reliable judgments about the qualitative features of the flow. Recently, in addition to [7], several papers have been published [8–10] in which the authors used a similar approach to solve the direct problem in the theory of the Laval nozzle (in the case of a nonconducting gas).Translated from Izvestiya Akademiya Nauk SSSR, Mekhanika Zhidkosti i Gaza., No. 5, pp. 14–20, September–October, 1971.In conclusion the author wishes to thank M. Ya. Ivanov, who kindly made available his program for calculating the flow of a conducting gas, and also A. B. Vatazhin and A. N. Kraiko for useful advice.  相似文献   

11.
Supersonic flow past a three-dimensional configuration consisting of two neighboring wedges with sweptback leading edges mounted on a preliminary compression surface is numerically investigated. The case of sweptback wedges is considered, when their beveled surfaces deflect the compressed flows to opposite directions. The calculations are carried out on the basis of the averaged Navier-Stokes equations, together with the SST k-? turbulence model, at the freestream Mach number M = 6. The results obtained are compared with the data for inviscid flow calculated using the Euler equations. The flow pattern features, due to the interaction in the plane of symmetry between the shocks formed by the wedges and the shock-induced three-dimensional quasiconical separations of the turbulent boundary layer on the preliminary compression surface along the swept leading edges, are established. Within these separation zones the flow is directed away from the plane of symmetry of the configuration and is characterized by considerably greater values of the transverse velocity component, as compared with the flow outside of the separation zone.  相似文献   

12.
The unsteady Euler equations are numerically solved using the finite volume one-step scheme recently developed by Ron-Ho Ni. The multiple-grid procedure of Ni is also implemented. The flows are assumed to be homo-enthalpic; the energy equation is eliminated and the static pressure is determined by the steady Bernoulli equation; a local time-step technique is used. Inflow and outflow boundaries are treated with the compatibility relations method of ONERA. The efficiency of the multiple-grid scheme is demonstrated by a two-dimensional calculation (transonic flow past the NACA 12 aerofoil) and also by a three-dimensional one (transonic lifting flow past the M6 wing). The third application presented shows the ability of the method to compute the vortical flow around a delta wing with leading-edge separation. No condition is applied at the leading-edge; the vortex sheets are captured in the same sense as shock waves. Results indicate that the Euler equations method is well suited for the prediction of flows with shock waves and contact discontinuities, the multiple-grid procedure allowing a substantial reduction of the computational time.  相似文献   

13.
The mathematical model of a gasdynamic discontinuity is used in the area of study concerning gas flows with large gradients of gasdynamic functions. Gasdynamic functions before and after the discontinuity meet non-linear algebraic equations called the dynamic compatibility conditions on the discontinuities. Different modes of shock wave structures forming as a result of regular or irregular interference of the incoming discontinuities of different types are described. Ranges of the initial flow parameters definition such that either shock wave structures of different modes take place or interference equations have no solutions are determined. Most attention is given to arbitrary triple shock-wave configurations. Their classification is proposed. Differential characteristics of the steady flow are studied. The notion “differential characteristics” includes first derivatives of the fundamental gasdynamic parameters with respect to natural coordinates and curvatures of the discontinuities surfaces. Effect of unsteadiness on the triple-shock configuration is examined. Some problems arising at creation of complete local theory of steady and propagating gasdynamic discontinuities interference are formulated.  相似文献   

14.
In this paper we study two-dimensional flows of incompressible viscoelastic Maxwell media with Jaumann corotational derivative in the rheological constitutive law. In the general case, due to the incompressibility condition, the equations of motion have both real and complex characteristics. Group properties of this system are studied. On this basis, two submodels of the Maxwell model are selected, which can be reduced to hyperbolic ones. More precisely, we consider plane shear flow between two parallel planes and Couette type flow caused by the inertial cylinder rotation. As a result, we obtain the closed systems of three equations of mixed type, which describe nonlinear transverse waves in an incompressible Maxwell fluid. It is demonstrated that discontinuities can develop in elastic media even from smooth initial data. Stability of shocks in the Maxwell fluid with and without retardation time is discussed.  相似文献   

15.
Most gas dynamic computations in industrial ducts are done in one dimension with cross-section-averaged Euler equations. This poses a fundamental difficulty as soon as geometrical discontinuities are present. The momentum equation contains a non-conservative term involving a surface pressure integral, responsible for momentum loss. Definition of this integral is very difficult from a mathematical standpoint as the flow may contain other discontinuities (shocks, contact discontinuities). From a physical standpoint, geometrical discontinuities induce multidimensional vortices that modify the surface pressure integral. In the present paper, an improved 1D flow model is proposed. An extra energy (or entropy) equation is added to the Euler equations expressing the energy and turbulent pressure stored in the vortices generated by the abrupt area variation. The turbulent energy created by the flow–area change interaction is determined by a specific estimate of the surface pressure integral. Model’s predictions are compared with 2D-averaged results from numerical solution of the Euler equations. Comparison with shock tube experiments is also presented. The new 1D-averaged model improves the conventional cross-section-averaged Euler equations and is able to reproduce the main flow features.  相似文献   

16.
The problem of the decay of an arbitrary discontinuity (the Riemann problem) for the system of equations describing vortex plane-parallel flows of an ideal incompressible liquid with a free boundary is studied in a long-wave approximation. A class of particular solutions that correspond to flows with piecewise-constant vorticity is considered. Under certain restrictions on the initial data of the problem, it is proved that this class contains self-similar solutions that describe the propagation of strong and weak discontinuities and the simple waves resulting from the nonlinear interaction of the specified vortex flows. An algorithm for determining the type of resulting wave configurations from initial data is proposed. It extends the known approaches of the theory of one-dimensional gas flows to the case of substantially two-dimensional flows. Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 5, pp. 55–66, September–October, 1998.  相似文献   

17.
The results of a numerical modeling of flow past a configuration consisting of two wedges with swept leading edges, so mounted on a preliminary compression surface that the beveled wedge surfaces deflect the wedge-compressed flows counter to each other, are presented. The calculations are performed on the basis of the averaged Navier-Stokes equations, together with the SST k-ω turbulence model, at the freestream Mach number M = 6. For the configuration geometry chosen the flow pattern is characterized by an irregular interaction between the wedge-induced shocks in the plane of symmetry. These shocks also induce three-dimensional, quasi-conical separations of a turbulent boundary layer on the preliminary compression wedge. In the separation zones the flows are directed toward the plane of symmetry of the configuration and interact with one another with the formation of a typical central “bulged” separation flow zone.  相似文献   

18.
本文基于三维可压缩Euler方程,采用基于Runge-Kutta时间离散的间断有限元方法(RKDG方法),对三维前台阶、三维Riemann问题和球Riemann等问题进行了模拟。结果表明,本文的RKDG方法能够在很少的网格内清晰地捕捉到三维复杂流场中的激波和接触间断;同时,将球Riemann问题中z=0.4平面压强沿到对称轴距离的分布与文献中的近似精确解相比,吻合较好,这也验证了本文的RKDG方法不仅能够进行三维复杂流场的定性描述,也能够应用于三维复杂流场的定量计算。  相似文献   

19.
Linear stability of two-dimensional steady flow in wavy-walled channels   总被引:1,自引:0,他引:1  
Linear stability of fully developed two-dimensional periodic steady flows in sinusoidal wavy-walled channels is investigated numerically. Two types of channels are considered: the geometry of wavy walls is identical and the location of the crest of the lower and upper walls coincides (symmetric channel) or the crest of the lower wall corresponds to the furrow of the upper wall (sinuous channel). It is found that the critical Reynolds number is substantially lower than that for plane channel flow and that when the non-dimensionalized wall variation amplitude is smaller than a critical value (about 0.26 for symmetric channel, 0.28 for sinuous channel), critical modes are three-dimensional stationary and for larger , two-dimensional oscillatory instabilities set in. Critical Reynolds numbers of sinuous channel flows are smaller for three-dimensional disturbances and larger for two-dimensional disturbances than those of symmetric channel flows. The disturbance velocity distribution obtained by the linear stability analysis suggests that the three-dimensional stationary instability is mainly caused by local concavity of basic flows near the reattachment point, while the critical two-dimensional mode resembles closely the Tollmien–Schlichting wave for plane Poiseuille flow.  相似文献   

20.
The possibility of applying geometrical acoustics to the investigation of the stability of flows in expanding regions was pointed out by Galin and Kulikovskii [1], who investigated the stability of homogeneous gas flows separated by discontinuity surfaces. Eckhoff [2] applied geometrical acoustics to the analysis of the stability of solutions of symmetric hyperbolic systems whose coefficients do not depend explicitly on the time. The treatment was given for unbounded regions in the case when acoustic points are absent. The stability of gas-dynamic flows satisfying these restrictions was considered by Eckhoff and Storesletten [3, 4]. The present paper is devoted to the question of the stability of plane self-similar flows in expanding regions [5] with respect to weak two-dimensional perturbations. Propagation of perturbations through the gas is described in the approximation of geometrical acoustics [6–8]. The intensity of the perturbations is characterized by the total energy E of a wave packet, whose behavior as t → ∞ is chosen as the criterion of stability of the considered flow. It is shown that E → 0 with the time in problems of a strong explosion and a decelerated piston. In the problem of an accelerated piston, the total energy of weak perturbations increases unboundedly with the time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号