首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of phosphanido complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)(PPh(2))] [L = CO (1), CNXylyl (2)] with early transition metal halides in high oxidation states has been carried out. New bimetallic niobocene complexes [{Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)}(μ-PPh(2))(MCl(5))] [M = Nb, L = CO (3), L = CNXylyl (4); M = Ta, L = CO (5), L = CNXylyl (6)] have been successfully synthesized by the reaction with [MCl(5)](2) (M = Nb or Ta). In a similar way [{Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)}(μ-PPh(2))(MCl(4))] [M = Ti, L = CO (13), CNXylyl (14); M = Zr, L = CO (15), CNXylyl (16)] were synthesized using MCl(4) (M = Ti or Zr). Solutions of complexes 4-6 in chloroform produced new ionic derivatives [Nb(η(5)-C(5)H(4)SiMe(3))(2)(P(H)Ph(2))(L)] [MCl(6)] [M = Nb, L = CO (7), L = CNXylyl (8); M = Ta, L = CO (9), L = CNXylyl (10)]. Ionic complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(P(Cl)Ph(2))(L)] [NbCl(4)O(thf)] [L = CO (11), CNXylyl (12)] were formed from solutions in thf - rapidly in the case of 3 but more slowly for 4. New heterometallic complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)(μ-PPh(2)){(Ti(η(5)-C(5)R(5))Cl(3)}] [R = H, L = CO (17), CNXylyl (18); R = CH(3), L = CO (19), CNXylyl (20)] were synthesized by the reaction of 1 or 2 with [Ti(η(5)-C(5)R(5))Cl(3)] (R = H or CH(3)). All of these compounds were characterized by IR and multinuclear NMR spectroscopy, and the molecular structures of 9 and 12 were determined by single-crystal X-ray diffraction.  相似文献   

2.
Treatment of the complex [U(Tren(TMS))(Cl)(THF)] [1, Tren(TMS) = N(CH(2)CH(2)NSiMe(3))(3)] with Me(3)SiI at room temperature afforded known crystalline [U(Tren(TMS))(I)(THF)] (2), which is reported as a new polymorph. Sublimation of 2 at 160 °C and 10(-6) mmHg afforded the solvent-free dimer complex [{U(Tren(TMS))(μ-I)}(2)] (3), which crystallizes in two polymorphic forms. During routine preparations of 1, an additional complex identified as [U(Cl)(5)(THF)][Li(THF)(4)] (4) was isolated in very low yield due to the presence of a slight excess of [U(Cl)(4)(THF)(3)] in one batch. Reaction of 1 with one equivalent of lithium dicyclohexylamide or bis(trimethylsilyl)amide gave the corresponding amide complexes [U(Tren(TMS))(NR(2))] (5, R = cyclohexyl; 6, R = trimethylsilyl), which both afforded the cationic, separated ion pair complex [U(Tren(TMS))(THF)(2)][BPh(4)] (7) following treatment of the respective amides with Et(3)NH·BPh(4). The analogous reaction of 5 with Et(3)NH·BAr(f)(4) [Ar(f) = C(6)H(3)-3,5-(CF(3))(2)] afforded, following addition of 1 to give a crystallizable compound, the cationic, separated ion pair complex [{U(Tren(TMS))(THF)}(2)(μ-Cl)][BAr(f)(4)] (8). Reaction of 7 with K[Mn(CO)(5)] or 5 or 6 with [HMn(CO)(5)] in THF afforded [U(Tren(TMS))(THF)(μ-OC)Mn(CO)(4)] (9); when these reactions were repeated in the presence of 1,2-dimethoxyethane (DME), the separated ion pair [U(Tren(TMS))(DME)][Mn(CO)(5)] (10) was isolated instead. Reaction of 5 with [HMn(CO)(5)] in toluene afforded [{U(Tren(TMS))(μ-OC)(2)Mn(CO)(3)}(2)] (11). Similarly, reaction of the cyclometalated complex [U{N(CH(2)CH(2)NSiMe(2)Bu(t))(2)(CH(2)CH(2)NSiMeBu(t)CH(2))}] with [HMn(CO)(5)] gave [{U(Tren(DMSB))(μ-OC)(2)Mn(CO)(3)}(2)] [12, Tren(DMSB) = N(CH(2)CH(2)NSiMe(2)Bu(t))(3)]. Attempts to prepare the manganocene derivative [U(Tren(TMS))MnCp(2)] from 7 and K[MnCp(2)] were unsuccessful and resulted in formation of [{U(Tren(TMS))}(2)(μ-O)] (13) and [MnCp(2)]. Complexes 3-13 have been characterized by X-ray crystallography, (1)H NMR spectroscopy, FTIR spectroscopy, Evans method magnetic moment, and CHN microanalyses.  相似文献   

3.
The hybrid dibismuthines O(CH(2)CH(2)BiPh(2))(2) and MeN(CH(2)-2-C(6)H(4)BiPh(2))(2) react with [M(CO)(5)(thf)] (M = Cr or W) to form [{M(CO)(5)}(2){O(CH(2)CH(2)BiPh(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)BiPh(2))(2)}] containing bridging bidentate (Bi(2)) coordination. The unsymmetrical tertiary bismuthine complexes [M(CO)(5){BiPh(2)(o-C(6)H(4)OMe)}] are also described. Depending upon the molar ratio, the hybrid distibines O(CH(2)CH(2)SbMe(2))(2) and MeN(CH(2)-2-C(6)H(4)SbMe(2))(2) react with [M(CO)(5)(thf)] to give the pentacarbonyl complexes [{M(CO)(5)}(2){O(CH(2)CH(2)SbMe(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] or tetracarbonyls cis-[M(CO)(4){O(CH(2)CH(2)SbMe(2))(2)}] and cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}]. The latter can also be obtained from [Cr(CO)(4)(nbd)] or [W(CO)(4)(pip)(2)], and contain chelating bidentates (Sb(2)-coordinated) as determined crystallographically. S(CH(2)-2-C(6)H(4)SbMe(2))(2) coordinates as a tridentate (SSb(2)) in fac-[M(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Cr or Mo) and fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)]. Fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] contains NSb(2)-coordinated ligand in the solid state, but in solution a second species, Sb(2)-coordinated and with a κ(1)-CF(3)SO(3) replacing the coordinated amine is also evident. X-ray crystal structures were also determined for fac-[Cr(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}], fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] and fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] [CF(3)SO(3)]. Hypervalent N···Sb interactions are present in cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Mo or W), but absent for M = Cr.  相似文献   

4.
The reaction of ScCl(3)(THF)(3) or YCl(3) in a 1:1 molar ratio under reflux for 8 h with [{Li(bdmpza)(H(2)O)}(4)] [bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate], [{Li(bdmpzdta)(H(2)O)}(4)] [bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate], and (Hbdmpze) [bdmpze = 2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide] affords the corresponding complexes [MCl(2)(kappa(3)-bdmpzx)(THF)] (x = a, M = Sc (1), Y (2); x = dta, M = Sc (3), Y (4); x = e, M = Sc (5), Y (6)). However, when the reaction was carried out for 1 h under reflux between ScCl(3)(THF)(3) and [{Li(bdmpzdta)(H(2)O)}(4)], a new anionic complex [Li(THF)(4)][ScCl(3)(kappa(3)-bdmpzdta)] (7) was obtained. Reaction of [{Li(bdmpza)(H(2)O)}(4)] with YCl(3) in a 2:1 molar ratio under reflux for 8 h gave the complex [YCl(kappa(3)-bdmpza)(2)] (8). The same reaction, but with the lithium compound [{Li(bdmpzdta)(H(2)O)}(4)], led to the formation of an anionic complex [Li(THF)(4)][YCl(3)(kappa(3)-bdmpzdta)] (9). The X-ray crystal structures of 7 and 9 were established. Finally, the addition of 1 equiv of [{Li(bdmpza)(H(2)O)}(4)] or [{Li(bdmpzdta)(H(2)O)}(4)] to a solution of YCl(3) in THF under reflux, followed by the addition of 1 equiv of 1,10-phenanthroline, resulted in the formation of the corresponding complexes [YCl(2)(kappa(3)-bdmpzx)(phen)] (x = a (10), x = dta (11)). These complexes are the first examples of group 3 metals stabilized by heteroscorpionate ligands. In addition, we have explored the reactivity of some of these complexes with alcohols and amides. For example, the direct reaction of [YCl(2)(kappa(3)-bdmpza)(THF)] (2) with several alcohols gave the alkoxide complexes [YCl(kappa(3)-bdmpza)(OR)] (R = Et (12), iPr (13)). Finally, the reaction between [ScCl(2)(kappa(3)-bdmpzdta)(THF)] (3) or [Li(THF)(4)][ScCl(3)(kappa(3)-bdmpzdta)] (7) and LiN(SiMe(3))(2).Et(2)O in 1:1 and 1:2 molar ratios gave rise to the complexes [ScCl(kappa(3)-bdmpzdta){N(SiMe(3))(2)}] (14) and [Sc(kappa(3)-bdmpzdta){N(SiMe(3))(2)}(2)] (15), respectively.  相似文献   

5.
The chiral clusters [H(4)Ru(4)(CO)(12-n)(L)(n)] (n = 1, 2; L = NMDPP), 1,1-[H(4)Ru(4)(CO)(10)(L-L)] (L-L = DUPHOS, DIPAMP), 1,2-[H(4)Ru(4)(CO)(10)(DIOP)] and [{H(4)Ru(4)(CO)(10)(DIOP)}(2)] have been synthesized by derivatizing the parent carbonyl cluster [H(4)Ru(4)(CO)(12)] with the appropriate mono- or didentate chiral phosphine ligand. The phosphine-substituted clusters were found to be able to catalyze the (asymmetric) hydrogenation of tiglic acid albeit with relatively low selectivity (enantiomeric excesses varying from 0 to 23%). It was found that the stability of the chiral ruthenium hydride clusters and the product distribution obtained in the catalytic reactions are dependent on the nature of the chiral phosphine. The crystal structures of [H(4)Ru(4)(CO)(12-n)(L)(n)] (n = 1, 2; L = NMDPP), 1,1-[H(4)Ru(4)(CO)(10)(L-L)] (L-L = DUPHOS, O-DUPHOS (partially oxygenated ligand), DIPAMP), 1,2-[H(4)Ru(4)(CO)(10)(DIOP)] and [{H(4)Ru(4)(CO)(10)(DIOP)}(2)] are presented.  相似文献   

6.
The tetranuclear complexes [{(PiPr(3))(2)(CO)ClRu(mu-CH=CHpy)Ru Cl(CO)(PPh(3))(2)}(2)(mu-CH=CH-C(6)H(4)- CH=CH-1,4)] (3 a) and [{(PiPr(3))(2)(CO)ClRu(mu-CH=CHpy)RuCl(CO)(PPh(3))(2)}(2)(mu-CH=CH-C(6)H(4)-CH=CH-1,3)] (3b), which contain vinylpyridine ligands that connect peripheral Ru(PiPr(3))(2)(CO)Cl units to a central divinylphenylene-bridged diruthenium core, have been prepared and investigated. These complexes, in various oxidation states up to the tetracation level, have been characterized by standard electrochemical and spectroelectrochemical techniques, including IR, UV/Vis/NIR and ESR spectroscopy. A comparison with the results for the vinylpyridine-bridged dinuclear complex [PiPr(3))(2)(CO)ClRu(mu-CH=CHpy)RuCl(CO)(PPh(3))(2)(CH=CHPh)] (6) and the divinylphenylene-bridged complexes [{(EtOOCpy)(CO)Cl(PPh(3))(2)Ru}(2)(mu-CH=CH-C(6)H(4)-CH=CH-1,4)] (8a) and [{(EtOOCpy)(CO)Cl(PPh(3))(2)Ru}(2)(mu-CH=CH-C(6)H(4)-CH=CH-1,3)] (8b), which represent the outer sections (6) or the inner core (8a,b) of complexes 3a,b, and with the mononuclear complex [(EtOOCpy)(CO)(PPh(3))(2)RuCl(CH=CHPh)] (7) indicate that every accessible oxidation process is primarily centred on one of the vinyl ligands, with smaller contributions from the metal centres. The experimental results and quantum chemical calculations indicate charge- and spin-delocalization across the central divinylphenylenediruthenium part of 3a,b or the styrylruthenium unit of 6, but not beyond. The energy gap between the higher lying styryl- or divinylphenylenediruthenium-based and the lower occupied vinylpyridineruthenium-based orbitals increases in the order 6<3 b<3 a and thus follows the conjugation within the non-heteroatom-substituted aromatic vinyl ligand.  相似文献   

7.
The ruthenium(II) complexes [Ru(R)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh) are formed on reaction of IPr·CS(2) with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] (BTD = 2,1,3-benzothiadiazole) or [Ru(C(C≡CPh)=CHPh)Cl(CO)(PPh(3))(2)] in the presence of ammonium hexafluorophosphate. Similarly, the complexes [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) are formed in the same manner when ICy·CS(2) is employed. The ligand IMes·CS(2) reacts with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] to form the compounds [Ru(R)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh). Two osmium analogues, [Os(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) and [Os(C(C≡CPh)=CHPh)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) were also prepared. When the more bulky diisopropylphenyl derivative IDip·CS(2) is used, an unusual product, [Ru(κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IDip)Cl(CO)(PPh(3))(2)](+), with a migrated vinyl group, is obtained. Over extended reaction times, [Ru(CH=CHC(6)H(4)Me-4)Cl(BTD)(CO)(PPh(3))(2)] also reacts with IMes·CS(2) and NH(4)PF(6) to yield the analogous product [Ru{κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IMes}Cl(CO)(PPh(3))(2)](+)via the intermediate [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+). Structural studies are reported for [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)]PF(6) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)]PF(6).  相似文献   

8.
Treatment of p-tert-butylcalix[6]areneH(6) (H(6)tBu-L) or p-tert-butylcalix[8]areneH(8) (H(8)tBu-L(1)) with [MCl(5)] (M=Nb, Ta) in refluxing toluene or dichloromethane affords, after work-up, the complexes [{M(NCMe)Cl(2)}(2)(tBu-L)] (M=Nb (1), Ta (2)) and [(MCl(2))(2)(tBu-L(1)H(2))] (M=Nb (4), Ta (5)), respectively. Complex 1, as well as [{Nb(2)(mu-O)(2)(mu-Cl)(tBu-LH)}(2)] (3), is also available from [NbOCl(3)] and H(6)tBu-L. Reaction of [MOCl(3)] (M=Nb, Ta) with Li(3)(tBu-L(2)) in diethyl ether, where H(3)tBu-L(2) is p-tert-butylhexahomotrioxacalix[3]areneH(3), affords, after work-up, the trimeric complexes [{M(tBu-L(2))(mu-O)}(3)] (M=Nb (6), Ta (7)). The behaviour of 1 to 7 (not 3), as well as the known complexes [{(MCl)p-tert-butylcalix[4]arene}(2)] (M=Nb (8), Ta (9)) and [(MCl(2))p-tert-butylcalix[4]arene(OMe)] (M=Nb (10), Ta (11)), as pro-catalysts for the polymerisation of ethylene has been investigated. In the presence of dimethyl (or diethyl)aluminium chloride, methylaluminoxane or trimethylaluminium, these niobium and tantalum procatalysts are all active (<35 g mmol(-1) h(-1) bar(-1)), for the polymerisation of ethylene affording high-molecular-weight linear polyethylene. The dimethyleneoxa-bridged systems (derived from 6 and 7) are more active (84 and 46 g mmol(-1) h(-1) bar(-1), respectively) than the methylene-bridged systems. The molecular structures of 1-6 and 10 (acetonitrile solvate) are reported.  相似文献   

9.
The treatment of [{Rh(μ-SH){P(OPh)(3)}(2)}(2)] with [{M(μ-Cl)(diolef)}(2)] (diolef=diolefin) in the presence of NEt(3) affords the hydrido-sulfido clusters [Rh(3)(μ-H)(μ(3)-S)(2)(diolef){P(OPh)(3)}(4)] (diolef=1,5-cyclooctadiene (cod) for 1, 2,5-norbornadiene (nbd) for 2, and tetrafluorobenzo[5,6]bicyclo[2.2.2]octa-2,5,7-triene (tfb) for 3) and [Rh(2)Ir(μ-H)(μ(3)-S)(2)(cod){P(OPh)(3)}(4)] (4). Cluster 1 can be also obtained by treating [{Rh(μ-SH){P(OPh)(3)}(2)}(2)] with [{Rh(μ-OMe)(cod)}(2)], although the main product of the reaction with [{Ir(μ-OMe)(cod)}(2)] was [RhIr(2)(μ-H)(μ(3)-S)(2)(cod)(2){P(OPh)(3)}(2)] (5). The molecular structures of clusters 1 and 4 have been determined by X-ray diffraction methods. The deprotonation of a hydrosulfido ligand in [{Rh(μ-SH)(CO)(PPh(3))}(2)] by [M(acac)(diolef)] (acac=acetylacetonate) results in the formation of hydrido-sulfido clusters [Rh(3)(μ-H)(μ(3)-S)(2)(CO)(2) (diolef)(PPh(3))(2)] (diolef=cod for 6, nbd for 7) and [Rh(2)Ir(μ-H)(μ(3)-S)(2)(CO)(2)(cod)(PPh(3))(2)] (8). Clusters 1-3 and 5 exist in solution as two interconverting isomers with the bridging hydride ligand at different edges. Cluster 8 exists as three isomers that arise from the disposition of the PPh(3) ligands in the cluster (cis and trans) and the location of the hydride ligand. The dynamic behaviour of clusters with bulky triphenylphosphite ligands, which involves hydrogen migration from rhodium to sulfur with a switch from hydride to proton character, is significant to understand hydrogen diffusion on the surface of metal sulfide hydrotreating catalysts.  相似文献   

10.
The dynamic behavior in solution of eight mono-hapto?tetraphosphorus transition metal-complexes, trans-[Ru(dppm)(2) (H)(η(1) -P(4) )]BF(4) ([1]BF(4) ), trans-[Ru(dppe)(2) (H)(η(1) -P(4) )]BF(4) ([2]BF(4) ), [CpRu(PPh(3) )(2) (η(1) -P(4) )]PF(6) ([3]PF(6) ), [CpOs(PPh(3) )(2) (η(1) -P(4) )]PF(6) ([4]PF(6) ), [Cp*Ru(PPh(3) )(2) (η(1) -P(4) )]PF(6) ([5]PF(6) ), [Cp*Ru(dppe)(η(1) -P(4) )]PF(6) ([6]PF(6) ), [Cp*Fe(dppe)(η(1) -P(4) )]PF(6) ([7]PF(6) ), [(triphos)Re(CO)(2) (η(1) -P(4) )]OTf ([8]OTf), and of three bimetallic Ru(μ,η(1:2) -P(4) )Pt species [{Ru(dppm)(2) (H)}(μ,η(1:2) -P(4) ){Pt(PPh(3) )(2) }]BF(4) ([1-Pt]BF(4) ), [{Ru(dppe)(2) (H)}(μ,η(1:2) -P(4) ){Pt(PPh(3) )(2) }]BF(4) ([2-Pt]BF(4) ), [{CpRu(PPh(3) )(2) )}(μ,η(1:2) -P(4) ){Pt(PPh(3) )(2) }]BF(4) ([3-Pt]BF(4) ), [dppm=bis(diphenylphosphanyl)methane; dppe=1,2-bis(diphenylphosphanyl)ethane; triphos=1,1,1-tris(diphenylphosphanylmethyl)ethane; Cp=η(5) -C(5) H(5) ; Cp*=η(5) -C(5) Me(5) ] was studied by variable-temperature (VT) NMR and (31) P{(1) H} exchange spectroscopy (EXSY). For most of the mononuclear species, NMR spectroscopy allowed to ascertain that the metal-coordinated P(4) molecule experiences a dynamic process consisting, apart from the free rotation about the M?P(4) axis, in a tumbling movement of the P(4) cage while remaining chemically coordinated to the central metal. EXSY and VT (31) P?NMR experiments showed that also the binuclear complex cations [1-Pt](+) -[3-Pt](+) are subjected to molecular motions featured by the shift of each metal from one P to an adjacent one of the P(4) moiety. The relative mobility of the metal fragments (Ru vs. Pt) was found to depend on the co-ligands of the binuclear complexes. For complexes [2]BF(4) and [3]PF(6) , MAS, (31) P?NMR experiments revealed that the dynamic processes observed in solution (i.e., rotation and tumbling) may take place also in the solid state. The activation parameters for the dynamic processes of complexes 1(+) , 2(+) , 3(+) , 4(+) , 6(+) , 8(+) in solution, as well as the X-ray structures of 2(+) , 3(+) , 5(+) , 6(+) are also reported. The data collected suggest that metal-coordinated P(4) should not be considered as a static ligand in solution and in the solid state.  相似文献   

11.
The reaction of [Sb(2)W(22)O(74)(OH)(2)](12-) and [Fe(4)(H(2)O)(10)(β-TeW(9)O(33))(2)](4-) with (NH(4))(2)[RuCl(6)] in aqueous solution resulted in the novel ruthenium(IV)-containing polyanions [{Ru(IV)(4)O(6)(H(2)O)(9)}(2)Sb(2)W(20)O(68)(OH)(2)](4-) and [{Ru(IV)(4)O(6)(H(2)O)(9)}(2){Fe(H(2)O)(2)}(2){β-TeW(9)O(33)}(2)H](-), exhibiting two cationic, adamantane-like, tetraruthenium(IV) units {Ru(4)O(6)(H(2)O)(9)}(4+) bound to the respective polyanion in an external, highly accessible fashion.  相似文献   

12.
This paper describes the synthesis and selected reactions of a series of crystalline mono(beta-diiminato)yttrium chlorides , , , , , , and . The X-ray structure of each has been determined, as well as of [YCl()(2)] (), [Y()(2)OBu(t)] () and [Y{CH(SiMe(3))(2)}(thf)(mu-Cl)(2)Li(OEt(2))(2)(mu-Cl)](2) (). The N,N'-kappa(2)-beta-diiminato ligands were [{N(R)C(Me)}(2)CH](-) [R = C(6)H(4)Pr(i)-2 (); R = C(6)H(4)Bu(t)-2 (); R = C(6)H(3)Pr(i)(2)-2,6 ()], [{N(SiMe(3))C(Ph)}(2)CH)](-) () and [{N(C(6)H(3)Pr(i)(2)-2,6)C(H)}(2)CPh](-) (). Equivalent portions of Li[L(x)] and YCl(3) in Et(2)O under mild conditions yielded [Y(mu-Cl)(L(x))(mu-Cl)(2)Li(OEt(2))(2)](2) [L(x) = () or ()] and [Y(mu-Cl)()(mu-Cl)Li(OEt(2))(2)(mu-Cl)](2) () or its thf (instead of Et(2)O) equivalent . Each of the Li(OEt(2))(2)Cl(2) moieties is bonded in a terminal () or bridging () mode with respect to the two Y atoms; the difference is attributed to the greater steric demand of than or . Under slightly more forcing conditions, YCl(3) and Li() (via) gave the lithium-free complex [YCl(2)()(thf)(2)] (). Two isoleptic compounds and (having in place of in , and , respectively) were obtained from YCl(3) and an equivalent portion of K[] and Na[], respectively; under the same conditions using Na[], the unexpected product was [YCl()(2)] () (i.e. incorporating only one half of the YCl(3)). A further unusual outcome was in the formation of from and 2 Li[CH(SiMe(3))(2)]. Compound [Y(){N(H)C(6)H(3)Pr(i)(2)-2,6}(thf)(mu(3)-Cl)(2)K](2).4Et(2)O (), obtained from and K[N(H)C(6)H(3)Pr(i)(2)-2,6], is noteworthy among group 3 or lanthanide metal (M) compounds for containing MClKCl (M = Y) moieties.  相似文献   

13.
The reactions of [Et(4)N](3)[Sb{Fe(CO)(4)}(4)] (1) with RX (R = Me, Et, n-Pr; X = I) in MeCN form the monoalkylated antimony complexes [Et(4)N](2)[RSb{Fe(CO)(4)}(3)] (R = Me, 2; R = Et, 4; R = n-Pr, 6) and the dialkylated antimony clusters [Et(4)N][R(2)Sb{Fe(CO)(4)}(2)] (R = Me, 3; R = Et, 5; R = n-Pr, 7), respectively. When [Et(4)N](3)[Sb{Fe(CO)(4)}(4)] reacts with i-PrI, only the monoalkylated antimony complex [Et(4)N](2)[i-PrSb{Fe(CO)(4)}(3)] (8) is obtained. The mixed dialkylantimony complex [Et(4)N][MeEtSb{Fe(CO)(4)}(2)] (9) also can be synthesized from the reaction of 2 with EtI. While the reaction with Br(CH(2))(2)Br produces [Et(4)N](2)[BrSb{Fe(CO)(4)}(3)] (10), treatment with Cl(CH(2))(3)Br forms the monoalkylated product [Et(4)N](2)[Cl(CH(2))(3)Sb{Fe(CO)(4)}(3)] (11) and a dialkylated novel antimony-iron complex [Et(4)N][{&mgr;-(CH(2))(3)}Sb{Fe(CO)(4)}(3)] (12). On the other hand, the reaction with Br(CH(2))(4)Br forms the monoalkylated antimony product and the dialkylated antimony complex [Et(4)N][{&mgr;-(CH(2))(4)}Sb{Fe(CO)(4)}(2)] (13). Complexes 2-13 are characterized by spectroscopic methods or/and X-ray analyses. On the basis of these analyses, the core of the monoalkyl clusters consists of a central antimony atom tetrahedrally bonded to one alkyl group and three Fe(CO)(4) fragments and the dialkyl products are structurally similar to the monoalkyl clusters, with the central antimony bonded to two alkyl groups and two Fe(CO)(4) moieties in each case. The dialkyl complex 3 crystallizes in the monoclinic space group P2(1)/c with a = 13.014(8) ?, b = 11.527(8) ?, c = 17.085(5) ?, beta = 105.04(3) degrees, V = 2475(2) ?(3), and Z = 4. Crystals of 12 are orthorhombic, of space group Pbca, with a = 14.791(4) ?, b = 15.555(4) ?, c = 27.118(8) ?, V = 6239(3) ?(3), and Z = 8. The anion of cluster 12 exhibits a central antimony atom bonded to three Fe(CO)(4) fragments with a -(CH(2))(3)- group bridging between the Sb atom and one Fe(CO)(4) fragment. This paper discusses the details of the reactions of [Et(4)N](3)[Sb{Fe(CO)(4)}(4)] with a series of alkyl halides and dihalides. These reactions basically proceed via a novel double-alkylation pathway, and this facile methodology can as well provide a convenient route to a series of alkylated antimony-iron carbonyl clusters.  相似文献   

14.
A series of new star-shaped trinuclear Ru(II) complexes of imidazo[4,5-f][1,10]phenanthroline derivatives, [{Ru(bpy)(2)}(3){μ-mes(1,4-phO-Izphen)(3)}](ClO(4))(6)·4H(2)O (6), [{Ru(phen)(2)}(3){μ-mes(1,4-phO-Izphen)(3)}](ClO(4))(6)·3H(2)O (7), [{Ru(bpy)(2)}(3){μ-mes(1,2-phO-Izphen)(3)}](ClO(4))(6)·4H(2)O (8), and [{Ru(phen)(2)}(3){μ-mes(1,2-phO-Izphen)(3)}](ClO(4))(6)·3H(2)O (9) [mes(1,4-phO-Izphen)(3) (4) = 2,4,6-tri methyl-1,3,5-tris(4-oxymethyl-1-yl(1H-imidazo-2-yl-[4,5-f][1,10]phenanthroline)phenyl)benzene and (mes(1,2-phO-Izphen)(3) (5) = 2,4,6-trimethyl-1,3,5-tris(2-oxymethyl-1-yl(1H-imidazo-2-yl[4,5-f][1,10]phenanthroline)phenyl)benzene] have been synthesized and characterized. Their photophysical and electrochemical properties have also been studied. The core molecule, 1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene (1) and the trialdehyde intermediate, 2,4,6-trimethyl-1,3,5-tris(4-oxymethyl-1-formylphenyl)benzene (2) are characterized by single crystal X-ray diffraction: triclinic, P1[combining macron]. The complexes 6-9 exhibit Ru(II) metal centered emission at 618, 601, 615, and 605 nm, respectively, in fluid solution at room temperature. The emission profile and emission maxima are similar and independent of the excitation wavelength for each complex. The complexes 6-9 undergo metal centered oxidation and the E(1/2) values for the Ru(II)/Ru(III) redox couples are 1.33, 1.34, 1.35, and 1.35 V versus Ag/Ag(+), respectively, which are cathodically shifted with respect to that of the mononuclear complex [Ru(bpy)(2)(PIP)](2+) (PIP = 2-phenylimidazo[4,5-f][1,10]phenanthroline). The study demonstrates the versatility of the highly symmetric trinucleating imidazo[4,5-f][1,10]phenanthroline-based core ligands 4 and 5 in forming trinuclear Ru(II) complexes.  相似文献   

15.
A novel, and quite general, approach for the preparation of tris(heteroleptic) ruthenium(II) complexes is reported. Using this method, which is based on photosubstitution of carbonyl ligands in precursors such as [Ru(bpy)(CO)(2)Cl(2)] and [Ru(bpy)(Me(2)bpy)(CO)(2)](PF(6))(2), mononuclear and dinuclear Ru(II) tris(heteroleptic) polypyridyl complexes containing the bridging ligands 3,5-bis(pyridin-2-yl)-1,2,4-triazole (Hbpt) and 3,5-bis(pyrazin-2-yl)-1,2,4-triazole (Hbpzt) have been prepared. The complexes obtained were purified by column chromatography and characterized by HPLC, mass spectrometry, 1H NMR, absorption and emission spectroscopy and by electrochemical methods. The X-ray structures of the compounds [Ru(bpy)(Me(2)bpy)(bpt)](PF(6))x0.5C(4)H(10)O [1x0.5C(4)H(10)O], [Ru(bpy)(Me(2)bpy)(bpzt)](PF(6))xH(2)O (2xH(2)O) and [Ru(bpy)(Me(2)bpy)(CH(3)CN)(2)](PF(6))(2)xC(4)H(10)O (6xC(4)H(10)O) are reported. The synthesis and characterisation of the dinuclear analogues of 1 and 2, [{Ru(bpy)(Me(2)bpy)}(2)bpt](PF(6))(3)x2H(2)O (3) and [{Ru(bpy)(Me(2)bpy)}(2)bpzt](PF(6))(3) (4), are also described.  相似文献   

16.
The carbon carbon coupling reaction by nucleophilic attack of (CO)(5)Cr(CN-CF=CF(2)) 1 by lithium or Grignard compounds 2a-i yields the isocyanide complexes (CO)(5)Cr(CN-CF=CF-R) 3a-i (a R = CH=CH(2), b R = CH=CF(2), c R = C≡CH, d R = C≡C-SiMe(3), e R = C≡C-Ph, f R = C≡C-C(6)F(4)OMe, g R = C≡C-C(6)H(3)(CF(3))(2), h R = C(6)F(5), i R = C(6)H(3)(CF(3))(2)) as mixtures of E and Z isomers. The dinuclear complexes 5a-c are obtained from the reaction of 1 with the dilithio or dimagnesium compound 4a-c as the Z,Z-, E,Z- and E,E-isomers, respectively. (CO)(5)Cr(CN-CF=CF-C≡C-C≡C-CF=CF-NC)Cr(CO)(5)7 is obtained as a mixture of Z,Z-, Z,E- and E,E-isomers from (CO)(5)Cr(CN-CF=CF-C≡C-H 3d by Eglington-Glaser coupling. (CO)(5)Cr(CN-CF=CF-C≡C-CF=CF-NC)Cr(CO)(5)6 and (CO)(5)Cr(CN-CF=CF-C=C-C≡C-CF=CF-NC)Cr(CO)(5)7 react with octacarbonyldicobalt forming the cluster compounds Z,Z-[{η(2)-μ(2)-(CO)(5)Cr(CN-CF=CF-C≡C-CF=CF-NC)Cr(CO)(5)}Co(2)(CO)(6)] Z,Z-8, E,Z-[{η(2)-μ(2)-(CO)(5)Cr(CN-CF=CF-C≡C-CF=CF-NC)Cr(CO)(5)}Co(2)(CO)(6)] E,Z-8 and E,E-[{η(2)-μ(2)-(CO)(5)Cr(CN-CF=CF-C≡C-CF=CF-NC)Cr(CO)(5)}Co(2)(CO)(6)] E,E-8 and Z,Z-[{η(2)-μ(2)-(CO)(5)Cr(CN-CF=CF-C≡C-C≡C-CF=CF-NC)Cr(CO)(5)}{Co(2)(CO)(6)}(2)] Z,Z-9, E,Z-[{η(2)-μ(2)-(CO)(5)Cr(CN-CF=CF-C≡C-C≡C-CF=CF-NC)Cr(CO)(5)}{Co(2)(CO)(6)}(2)] E,Z-9 and E,E-[{η(2)-μ(2)-(CO)(5)Cr(CN-CF=CF-C≡C-C≡C-CF=CF-NC)Cr(CO)(5)}{Co(2)(CO)(6)}(2)] Z,Z-9, respectively. The crystal and molecular structures of E-3d, Z-3h, Z,Z-8, E,Z-8 and Z,Z-9 were elucidated by single-crystal X-ray crystallography.  相似文献   

17.
Song LC  Li YL  Li L  Gu ZC  Hu QM 《Inorganic chemistry》2010,49(21):10174-10182
Three series of new Ni/Fe/S cluster complexes have been prepared and structurally characterized. One series of such complexes includes the linear type of (diphosphine)Ni-bridged double-butterfly Fe/S complexes [(μ-RS)(μ-S═CS)Fe(2)(CO)(6)](2)[Ni(diphosphine)] (1-6; R = Et, t-Bu, n-Bu, Ph; diphosphine = dppv, dppe, dppb), which were prepared by reactions of monoanions [(μ-RS)(μ-CO)Fe(2)(CO)(6)](-) (generated in situ from Fe(3)(CO)(12), Et(3)N, and RSH) with excess CS(2), followed by treatment of the resulting monoanions [(μ-RS)(μ-S═CS)Fe(2)(CO)(6)](-)with (diphosphine)NiCl(2). The second series consists of the macrocyclic type of (diphosphine)Ni-bridged double-butterfly Fe/S complexes [μ-S(CH(2))(4)S-μ][(μ-S═CS)Fe(2)(CO)(6)](2)[Ni(diphosphine)] (7-9; diphosphine = dppv, dppe, dppb), which were produced by the reaction of dianion [{μ-S(CH(2))(4)S-μ}{(μ-CO)Fe(2)(CO)(6)}(2)](2-) (formed in situ from Fe(3)(CO)(12), Et(3)N, and dithiol HS(CH(2))(4)SH with excess CS(2), followed by treatment of the resulting dianion [{μ-S(CH(2))(4)S-μ}{(μ-S═CS)Fe(2)(CO)(6)}(2)](2-) with (diphosphine)NiCl(2). However, more interestingly, when dithiol HS(CH(2))(4)SH (used for the production of 7-9) was replaced by HS(CH(2))(3)SH (a dithiol with a shorter carbon chain), the sequential reactions afforded another type of macrocyclic Ni/Fe/S complex, namely, the (diphosphine)Ni-bridged quadruple-butterfly Fe/S complexes [{μ-S(CH(2))(3)S-μ}{(μ-S═CS)Fe(2)(CO)(6)}(2)](2)[Ni(diphosphine)](2) (10-12; diphosphine = dppv, dppe, dppb). While a possible pathway for the production of the two types of novel metallomacrocycles 7-12 is suggested, all of the new complexes 1-12 were characterized by elemental analysis and spectroscopy and some of them by X-ray crystallography.  相似文献   

18.
Diaminostannylenes react with [Ru(3)(CO)(12)] without cluster fragmentation to give carbonyl substitution products regardless of the steric demand of the diaminostannylene reagent. Thus, the Sn(3)Ru(3) clusters [Ru(3){μ-Sn(NCH(2)(t)Bu)(2)C(6)H(4)}(3)(CO)(9)] (4) and [Ru(3){μ-Sn(HMDS)(2)}(3)(CO)(9)] (6) [HMDS = N(SiMe(3))(2)] have been prepared in good yields by treating [Ru(3)(CO)(12)] with an excess of the cyclic 1,3-bis(neo-pentyl)-2-stannabenzimidazol-2-ylidene and the acyclic and bulkier Sn(HMDS)(2), respectively, in toluene at 110 °C. The use of smaller amounts of Sn(HMDS)(2) (Sn/Ru(3) ratio = 2.5) in toluene at 80 °C afforded the Sn(2)Ru(3) derivative [Ru(3){μ-Sn(HMDS)(2)}(2)(μ-CO)(CO)(9)] (5). Compounds 5 and 6 represent the first structurally characterized diaminostannylene-ruthenium complexes. While a further treatment of 5 with Ge(HMDS)(2) led to a mixture of uncharacterized compounds, a similar treatment with the sterically alleviated diaminogermylene Ge(NCH(2)(t)Bu)(2)C(6)H(4) provided [Ru(3){μ-Sn(HMDS)(2)}(2){μ-Ge(NCH(2)(t)Bu)(2)C(6)H(4)}(CO)(9)] (7), which is a unique example of Sn(2)GeRu(3) cluster. All these reactions, coupled to a previous observation that [Ru(3)(CO)(12)] reacts with excess of Ge(HMDS)(2) to give the mononuclear complex [Ru{Ge(HMDS)(2)}(2)(CO)(3)] but triruthenium products with less bulky diaminogermylenes, indicate that, for reactions of [Ru(3)(CO)(12)] with diaminometalenes, both the volume of the diaminometalene and the size of its donor atom (Ge or Sn) are of key importance in determining the nuclearity of the final products.  相似文献   

19.
Treatment of titanyl sulfate in about 60 mM sulfuric acid with NaL(OEt) (L(OEt) (-)=[(eta(5)-C(5)H(5))Co{P(O)(OEt)(2)}(3)](-)) afforded the mu-sulfato complex [(L(OEt)Ti)(2)(mu-O)(2)(mu-SO(4))] (2). In more concentrated sulfuric acid (>1 M), the same reaction yielded the di-mu-sulfato complex [(L(OEt)Ti)(2)(mu-O)(mu-SO(4))(2)] (3). Reaction of 2 with HOTf (OTf=triflate, CF(3)SO(3)) gave the tris(triflato) complex [L(OEt)Ti(OTf)(3)] (4), whereas treatment of 2 with Ag(OTf) in CH(2)Cl(2) afforded the sulfato-capped trinuclear complex [{(L(OEt))(3)Ti(3)(mu-O)(3)}(mu(3)-SO(4)){Ag(OTf)}][OTf] (5), in which the Ag(OTf) moiety binds to a mu-oxo group in the Ti(3)(mu-O)(3) core. Reaction of 2 in H(2)O with Ba(NO(3))(2) afforded the tetranuclear complex (L(OEt))(4)Ti(4)(mu-O)(6) (6). Treatment of 2 with [{Rh(cod)Cl}(2)] (cod=1,5-cyclooctadiene), [Re(CO)(5)Cl], and [Ru(tBu(2)bpy)(PPh(3))(2)Cl(2)] (tBu(2)bpy=4,4'-di-tert-butyl-2,2'-dipyridyl) in the presence of Ag(OTf) afforded the heterometallic complexes [(L(OEt))(2)Ti(2)(O)(2)(SO(4)){Rh(cod)}(2)][OTf](2) (7), [(L(OEt))(2)Ti(O)(2)(SO(4)){Re(CO)(3)}][OTf] (8), and [{(L(OEt))(2)Ti(2)(mu-O)}(mu(3)-SO(4))(mu-O)(2){Ru(PPh(3))(tBu(2)bpy)}][OTf](2) (9), respectively. Complex 9 is paramagnetic with a measured magnetic moment of about 2.4 mu(B). Treatment of zirconyl nitrate with NaL(OEt) in 3.5 M sulfuric acid afforded [(L(OEt))(2)Zr(NO(3))][L(OEt)Zr(SO(4))(NO(3))] (10). Reaction of ZrCl(4) in 1.8 M sulfuric acid with NaL(OEt) in the presence Na(2)SO(4) gave the mu-sulfato-bridged complex [L(OEt)Zr(SO(4))(H(2)O)](2)(mu-SO(4)) (11). Treatment of 11 with triflic acid afforded [(L(OEt))(2)Zr][OTf](2) (12), whereas reaction of 11 with Ag(OTf) afforded a mixture of 12 and trinuclear [{L(OEt)Zr(SO(4))(H(2)O)}(3)(mu(3)-SO(4))][OTf] (13). The Zr(IV) triflato complex [L(OEt)Zr(OTf)(3)] (14) was prepared by reaction of L(OEt)ZrF(3) with Me(3)SiOTf. Complexes 4 and 14 can catalyze the Diels-Alder reaction of 1,3-cyclohexadiene with acrolein in good selectivity. Complexes 2-5, 9-11, and 13 have been characterized by X-ray crystallography.  相似文献   

20.
A family of novel titanasiloxanes containing the structural unit {[Ti(eta(5)-C(5)Me(5))O](3)} were synthesized by hydron-transfer processes involving reactions with equimolecular amounts of mu(3)-alkylidyne derivatives [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu(3)-CR)] (R=H (1), Me (2)) and monosilanols, R(3)'Si(OH), silanediols, R(2)'Si(OH)(2), and the silanetriol tBuSi(OH)(3). Treatment of 1 and 2 with triorganosilanols (R'=Ph, iPr) in hexane affords the new metallasiloxane derivatives [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu-CHR)(OSiR(3)')] (R=H, R'=Ph (3), iPr (4); R=Me, R'=Ph (5), iPr (6)). Analogous reactions with silanediols, (R'=Ph, iPr), give the cyclic titanasiloxanes [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu-O(2)SiR'(2))(R)] (R=Me, R'=Ph (7), iPr (8); R=Et, R'=Ph (9), iPr (10)). Utilization of tBuSi(OH)(3) with 1 or 2 at room temperature produces the intermediate complexes [{Ti(eta(5)-C(5)Me(5)) (mu-O)}(3)(mu-O(2)Si(OH)tBu)(R)] (R=Me (11), Et(12)). Further heating of solutions of 11 or 12 affords the same compound with an adamantanoid structure, [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu-O(3)SitBu)] (13) and methane or ethane elimination, respectively. The X-ray crystal structures of 3, 4, 6, 8, 10, 12, and 13 have been determined. To gain an insight into the mechanism of these reactions, DFT calculations have been performed on the incorporation of monosilanols to the model complex [{Ti(eta(5)-C(5)H(5))(mu-O)}(3)(mu(3)-CMe)] (2 H). The proposed mechanism consists of three steps: 1) hydron transfer from the silanol to one of the oxygen atoms of the Ti(3)O(3) ring, forming a titanasiloxane; 2) intramolecular hydron migration to the alkylidyne moiety; and 3) a mu-alkylidene ligand rotation to give the final product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号