首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Coevolutionary dynamics is investigated in chemical catalysis, biological evolution, social and economic systems. The dynamics of these systems can be analyzed within the unifying framework of evolutionary game theory. In this Letter, we show that even in well-mixed finite populations, where the dynamics is inherently stochastic, biodiversity is possible with three cyclic-dominant strategies. We show how the interplay of evolutionary dynamics, discreteness of the population, and the nature of the interactions influences the coexistence of strategies. We calculate a critical population size above which coexistence is likely.  相似文献   

2.
The connectome is a wiring diagram mapping all the neural connections in the brain. At the cellular level, it provides a map of the neurons and synapses within a part or all of the brain of an organism. In recent years, significant advances have been made in the study of the connectome via network science and graph theory. This analysis is fundamental to understand neurotransmission (fast synaptic transmission) networks. However, neurons use other forms of communication as neuromodulation that, instead of conveying excitation or inhibition, change neuronal and synaptic properties. This additional neuromodulatory layers condition and reconfigure the connectome. In this paper, we propose that multilayer adaptive networks, in which different synaptic and neurochemical layers interact, are the appropriate framework to explain neuronal processing. Then, we describe a simplified multilayer adaptive network model that accounts for these extra-layers of interaction and analyse the emergence of interesting computational capabilities.  相似文献   

3.
We study the dynamical behavior of complex adaptive automata during unsupervised learning of periodic training sets. A new technique for their analysis is presented and applied to an adaptive network with distributed memory. We show that with general imput pattern sequences, the system can display behavior that ranges from convergence into simple fixed points and oscillations to chaotic wanderings. We also test the ability of the self-organized automaton to recognize spatial patterns, discriminate between them, and to elicit meaningful information out of noisy inputs. In this configuration we determine that the higher the ratio of excitation to inhibition, the broader the equivalence class into which patterns are put together.  相似文献   

4.
A satisfiability-unsatisfiability (SAT-UNSAT) transition takes place for many optimization problems when the number of constraints, graphically represented by links between variables nodes, is brought above some threshold. If the network of constraints is allowed to adapt by redistributing its links, the SAT-UNSAT transition may be delayed and preceded by an intermediate phase where the structure self-organizes to satisfy the constraints. We present an analytic approach, based on the recently introduced cavity method for large deviations, which exactly describes the two phase transitions delimiting this adaptive intermediate phase. We give explicit results for random bond models subject to the connectivity or rigidity percolation transitions, and compare them with numerical simulations.  相似文献   

5.
6.
Most previous studies concerning spatial games have assumed strategy updating occurs with a fixed ratio relative to interactions. We here set up a coevolutionary model to investigate how different ratio affects the evolution of cooperation on adaptive networks. Simulation results demonstrate that cooperation can be significantly enhanced under our rewiring mechanism, especially with slower natural selection. Meanwhile, slower selection induces larger network heterogeneity. Strong selection contracts the parameter area where cooperation thrives. Therefore, cooperation prevails whenever individuals are offered enough chances to adapt to the environment. Robustness of the results has been checked under rewiring cost or varied networks.  相似文献   

7.
Hui Liu  Juan Chen 《Physica A》2010,389(8):1759-534
This paper investigates generalized synchronization of three typical classes of complex dynamical networks: scale-free networks, small-world networks, and interpolating networks. The proposed synchronization strategy is to adjust adaptively a node’s coupling strength based on the node’s local generalized synchronization information. By taking the auxiliary-system approach and using the Lyapunov function method, we prove that for any given initial coupling strengths, the generalized synchronization can take place in complex networks consisting of nonidentical dynamical systems. It is demonstrated that the coupling strengths are affected by topologies of the networks. Furthermore, it is found that there are hierarchical features in the processes of generalized synchronization in scale-free networks because of their highly heterogeneous distributions of connection degree. Finally, we discuss in detail how a network’s degree of heterogeneity affects its generalization synchronization behavior.  相似文献   

8.
We study information processing in populations of boolean networks with evolving connectivity and systematically explore the interplay between the learning capability, robustness, the network topology, and the task complexity. We solve a long-standing open question and find computationally that, for large system sizes N, adaptive information processing drives the networks to a critical connectivity K(c)=2. For finite size networks, the connectivity approaches the critical value with a power law of the system size N. We show that network learning and generalization are optimized near criticality, given that the task complexity and the amount of information provided surpass threshold values. Both random and evolved networks exhibit maximal topological diversity near K(c). We hypothesize that this diversity supports efficient exploration and robustness of solutions. Also reflected in our observation is that the variance of the fitness values is maximal in critical network populations. Finally, we discuss implications of our results for determining the optimal topology of adaptive dynamical networks that solve computational tasks.  相似文献   

9.
Dynamical weights and enhanced synchronization in adaptive complex networks   总被引:4,自引:0,他引:4  
Dynamical organization of connection weights is studied in scale-free networks of chaotic oscillators, where the coupling strength of a node from its neighbors develops adaptively according to the local synchronization property between the node and its neighbors. We find that when complete synchronization is achieved, the coupling strength becomes weighted and correlated with the topology due to a hierarchical transition to synchronization in heterogeneous networks. Importantly, such an adaptive process enhances significantly the synchronizability of the networks, which could have meaningful implications in the manipulation of dynamical networks.  相似文献   

10.
Complex networks have been extensively studied in the past 15 years and with increasing details. However, research on the temporal dynamics of complex networks is largely a new territory yet to map out. The present volume presents a collection of papers dealing with various aspects of the problem and this editorial introduces the field as well as the papers.  相似文献   

11.
胡柯  胡涛  唐翌 《中国物理 B》2010,19(8):80206-080206
<正>This paper investigates cascading failures in networks by considering interplay between the flow dynamic and the network topology,where the fluxes exchanged between a pair of nodes can be adaptively adjusted depending on the changes of the shortest path lengths between them.The simulations on both an artificially created scale-free network and the real network structure of the power grid reveal that the adaptive adjustment of the fluxes can drastically enhance the robustness of complex networks against cascading failures.Particularly,there exists an optimal region where the propagation of the cascade is significantly suppressed and the fluxes supported by the network are maximal. With this understanding,a costless strategy of defense for preventing cascade breakdown is proposed.It is shown to be more effective for suppressing the propagation of the cascade than the recent proposed strategy of defense based on the intentional removal of nodes.  相似文献   

12.
This paper investigates the problem of projective lag synchronization behavior in drive-response dynamical networks (DRDNs) with identical and non-identical nodes. An adaptive control method is designed to achieve projective lag synchronization with fully unknown parameters and unknown bounded disturbances. These parameters were estimated by adaptive laws obtained by Lyapunov stability theory. Furthermore, sufficient conditions for synchronization are derived analytically using the Lyapunov stability theory and adaptive control. In addition, the unknown bounded disturbances are also overcome by the proposed control. Finally, analytical results show that the states of the dynamical network with non-delayed coupling can be asymptotically synchronized onto a desired scaling factor under the designed controller. Simulation results show the effectiveness of the proposed method.  相似文献   

13.
Zhi Li  Il Hong Suh 《Physica A》2009,388(12):2526-2534
Based on high gain feedback control theory, robust adaptive synchronization of dynamical network is investigated in this paper. When the non-linear coupling functions are unknown but with unknown bounded, some fairly simple robust adaptive scalar feedback controllers are derived. The key idea is that a time-varying gain parameter is introduced in designing controllers which can guarantee that the states of uncertain coupled dynamical networks robust adaptive asymptotically synchronize with each other. Numerical simulation is given to validate the proposed theoretical result.  相似文献   

14.
We consider a set of interacting phase oscillators, with a coupling between synchronized nodes adaptively reinforced, and the constraint of a limited resource for a node to establish connections with the other units of the network. We show that such a competitive mechanism leads to the emergence of a rich modular structure underlying cluster synchronization, and to a scale-free distribution for the connection strengths of the units.  相似文献   

15.
In this paper, the synchronization problem of general complex networks is investigated by using adaptive control schemes. Time-delay coupling, derivative coupling, nonlinear coupling etc. exist universally in real-world complex networks. The adaptive synchronization scheme is designed for the complex network with multiple class of coupling terms. A criterion guaranteeing synchronization of such complex networks is established by employing the Lyapunov stability theorem and adaptive control schemes. Finally, an illustrative example with numerical simulation is given to show the feasibility and efficiency of theoretical results.  相似文献   

16.
Random Boolean Networks (RBNs) are frequently used for modeling complex systems driven by information processing, e.g. for gene regulatory networks (GRNs). Here we propose a hierarchical adaptive random Boolean Network (HARBN) as a system consisting of distinct adaptive RBNs (ARBNs) – subnetworks – connected by a set of permanent interlinks. We investigate mean node information, mean edge information as well as mean node degree. Information measures and internal subnetworks topology of HARBN coevolve and reach steady-states that are specific for a given network structure. The main natural feature of ARBNs, i.e. their adaptability, is preserved in HARBNs and they evolve towards critical configurations which is documented by power law distributions of network attractor lengths. The mean information processed by a single node or a single link increases with the number of interlinks added to the system. The mean length of network attractors and the mean steady-state connectivity possess minima for certain specific values of the quotient between the density of interlinks and the density of all links in networks. It means that the modular network displays extremal values of its observables when subnetworks are connected with a density a few times lower than a mean density of all links.  相似文献   

17.
In this paper, we focus on the robust adaptive synchronization between two coupled chaotic neural networks with all the parameters unknown and time-varying delay. In order to increase the robustness of the two coupled neural networks, the key idea is that a sliding-mode-type controller is employed. Moreover, without the estimate values of the network unknown parameters taken as an updating object, a new updating object is introduced in the constructing of controller. Using the proposed controller, without any requirements for the boundedness, monotonicity and differentiability of activation functions, and symmetry of connections, the two coupled chaotic neural networks can achieve global robust synchronization no matter what their initial states are. Finally, the numerical simulation validates the effectiveness and feasibility of the proposed technique.  相似文献   

18.
This Letter investigates cluster synchronization in the adaptive complex dynamical networks with nonidentical nodes by a local control method and a novel adaptive strategy for the coupling strengths of the networks. In this approach, the coupling strength of each node adjusts adaptively only based on the state information of its neighborhood. By means of the proposed scheme, the sufficient conditions for achieving cluster synchronization are derived analytically by utilizing Lyapunov stability theory. It is demonstrated that the synchronization performance is sensitively affected by the control gain, the inner-coupling matrix and the network topological structure. The numerical simulations are performed to verify the effectiveness of the theoretical results.  相似文献   

19.
Cyclic polling-based dynamic wavelength and bandwidth allocation algorithm supporting differentiated classes of services in wavelength division multiplexing (WDM) passive optical networks (PONs) is proposed. In this algorithm, the optical line terminal (OLT) polls for optical network unit (ONU) requests to transmit data in a cyclic manner. Services are categorized into three classes: expedited forward (EF) priority, assured forwarding (AF) priority, and best effort (BE) priority. The OLT assigns bandwidth for different priorities with different strategies. Simulation results show that the proposed algorithm saves a lot of downstream bandwidth under low load and does not show the light-load penalty compared with the simultaneous and interleaved polling schemes.  相似文献   

20.
房栋  李宇  尹力  黄海宁 《应用声学》2010,29(2):81-86
本文针对水声信道的特点,提出了一种适于水下传感器网络突发通信分组前导码检测的自适应阈值算法。该算法根据估计的信号瞬时功率自适应地调整阈值,以取代固定阈值算法中的预设常数阈值。进行了理论分析和仿真,证明该算法具有恒虚警的特点,检测概率比固定阈值算法有明显的提高。针对检测到相关函数旁瓣的情况,加入了滑动窗口。该算法经过了湖试验证,性能良好,具有实用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号