首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An experimental scheme is proposed for faithful teleportation of a unknown optical cat-state via attenuated quantum channel due to energy loss or photon absorption during the process of entanglement sharing. The scheme is probabilistic, yet conclusive, and the effective classical communication costs just Log23 bits, instead of five bits which are necessary for full record of the measurement outcome. The scheme uses only threshold (i.e., yes/no) detectors so that exact photon counting is not needed. However, it requires application of a nonlinear element called cross-phase modulator. Feasibility of the scheme is also discussed with respect to EIT-based modern techniques.  相似文献   

2.
Employing quantum registers, we first proposed a novel (2, 3) quantum threshold scheme based on Einstein- Podolsky Rosen (EPR) correlations in this letter. Motivated by the present threshold scheme, we also propose a controlled communication scheme to transmit the secret message with a controller. In the communication protocol, the encoded quantum message carried by particles sequence, is transmitted by legitimate communicators.  相似文献   

3.
Ho Ngoc Phien 《Physics letters. A》2008,372(16):2825-2829
We propose a linear optics scheme to teleport an arbitrary two-mode coherent state. The devices used are beam-splitters, phase-shifters and ideal photo-detectors capable of distinguishing between even and odd photon numbers. The scheme achieves faithful teleportation with a probability of 1/4. However, with additional use of an appropriate displacement operator, the teleported state can always be made near-faithful.  相似文献   

4.
A linear optical scheme for realizing the nondeterministic two-qubit quantum controlled phase gate is presented. The proposed setup involves a pair of product states, polarizing beam splitters, phase shifters and photon number resolving detectors. The omission of entangled ancilla input and additional single-qubit operations significantly reduces the complexity of this gate. This can be well implemented in experiment.  相似文献   

5.
Utilized polarization entangled photons, a linear optical protocol for generating random quantum key distribution (QKD) is proposed, which is made up of EPR-source, linear optical elements, and conventional photon detectors. It is shown that total efficiency of QKD η=100% in theory.  相似文献   

6.
We report a practical non-postselection entanglement concentration scheme in which a maximally entangled Bell-state photon pair is produced from two pairs of partially (or non-maximally) entangled photons. Since this scheme is built only upon linear optical elements and does not require photon-number resolving detectors, it has immediate applications in experimental implementations of various quantum information protocols which require two-photon Bell-states.  相似文献   

7.
The influence of imperfections on achievable secret-key generation rates of quantum key distribution protocols is investigated. As examples of relevant imperfections, we consider tagging of Alice's qubits and dark counts at Bob's detectors, while we focus on a powerful eavesdropping strategy which takes full advantage of tagged signals. It is demonstrated that error correction and privacy amplification based on a combination of a two-way classical communication protocol and asymmetric Calderbank-Shor-Steane codes may significantly postpone the disastrous influence of dark counts. As a result, the distances are increased considerably over which a secret key can be distributed in optical fibres reliably. Results are presented for the four-state, the six-state, and the decoy-state protocols.  相似文献   

8.
We propose a quantum teleportation scheme for tripartite entangled coherent state (ECS) with continuous variable. Our scheme is feasible and economical in the sense that we need only linear optical devices such as beam splitters, phase shifters and photon detectors and employ three bipartite maximally ECSs as quantum channels. We also generalize the tripartite scheme into multipartite ease and calculate the minimum average fidelity for the schemes in tripartite and multipartite cases.  相似文献   

9.
Quantum state tomography (QST) is widely used to evaluate entanglement generated by spontaneous parametric down-conversion. Two-fold coincidence counts for 16 different configurations have been measured using single-photon detectors to estimate the fidelity (i.e., the probability overlap between ideal and real states) from the reconstructed density matrix. However, multi-pair emission events degrade the fidelity. Here, we numerically analyze pulse-pumped polarization-entangled photon pairs for single-photon detectors that can or cannot count the number of incident photons to estimate the fidelity given by QST. Threshold single-photon detectors are desirable for QST from a practical point of view. Our analysis suggests that using four threshold single-photon detectors for two-fold coincidence measurements offers almost the same fidelity as that given by four photon-number-resolving single-photon detectors. The fidelity estimated by QST becomes poor and loss independent when two threshold single-photon detectors are used.  相似文献   

10.
We propose a new linear optical protocol for remote state preparation (RSP) between two parties under control of a number of controllers in terms of optical elements. The realization of this protocol is appealing due to the fact that the quantum state of light is robust against the decoherence, and photons are ideal carriers for transmitting quantum information over long distances.  相似文献   

11.
Spontaneous parametric downconversion (SPDC) is widely used to generate entangled photon pairs; however, multi-pair emissions degrade the quality of the entanglement. We numerically evaluate polarization-entangled photon pairs created by SPDC. The effects of multi-pair emission events on the visibility of two-photon interference and on the fidelity (the probability overlap for ideal and real states) are analyzed using single-photon detectors that can count the number of incoming photons and discard multiphoton events. Compared with conventional threshold single-photon detectors, photon-number resolving single-photon detectors have higher fidelity for the same or lower visibility.  相似文献   

12.
Wei Song  Ping Zou 《Optics Communications》2009,282(15):3190-1983
We demonstrate how to perform quantum phase gate with cavity QED system in decoherence-free subspace by using only linear optics elements and photon detectors. The qubits are encoded in the singlet state of the atoms in cavities among spatially separated nodes, and the quantum interference of polarized photons decayed from the optical cavities is used to realized the desired quantum operation among distant nodes. In comparison with previous schemes, the distinct advantage is that the gate fidelity could not only resist collective noises, but also immune from atomic spontaneous emission, cavity decay, and imperfection of the photodetectors. We also discuss the experimental feasibility of our scheme.  相似文献   

13.
We describe a fault-tolerant one-way quantum computer on cluster states in three dimensions. The presented scheme uses methods of topological error correction resulting from a link between cluster states and surface codes. The error threshold is 1.4% for local depolarizing error and 0.11% for each source in an error model with preparation-, gate-, storage-, and measurement errors.  相似文献   

14.
Hong-Yi Dai  Ming Zhang 《Physica A》2008,387(14):3811-3816
We propose a scheme to probabilistically teleport an unknown three-level three-particle entangled state. The quantum channel is composed of a partial entangled three-level two-particle state and a partial entangled three-level three-particle state. We calculate the successful total probability and the classical communication cost required in the ideal probabilistic teleportation process, respectively. It is shown that an unknown three-level three-particle entangled state can be teleported using fewer entangled particles and lesser classical communication cost than Bennett et al.’s original protocol.  相似文献   

15.
Locality and fair sampling are proved to be contradictory assumptions in hidden variable models of the Bell test that are based upon a 3-dimensional sample space. This result makes the class of 3-dimensional hidden variable models incompatible with quantum mechanics in the ideal case, independently of detection efficiencies.  相似文献   

16.
We elucidate the dependence of purity and entanglement of two-photon states generated by spontaneous parametric down-conversion on the parameters of the source, such as crystal length, pump beam divergence, frequency bandwidth, and detectors angular aperture. The effect of crystal anisotropy is taken into account. Numerical simulations are presented for two types of commonly used source configurations.  相似文献   

17.
An updated version of our all-silicon quantum computing scheme [T.D. Ladd, J.R. Goldman, F. Yamaguchi, Y. Yamamoto, E. Abe, K.M. Itoh, Phys. Rev. Lett. 89 (2002) 017901. [3]] and the experimental progress towards its realization are discussed. We emphasize the importance of revisiting a wide range of isotope effects which have been explored over the past several decades for the construction of solid-state silicon quantum computers. Using RF decoupling techniques [T.D. Ladd, D. Maryenko, Y. Yamamoto, E. Abe, K.M. Itoh, Phys. Rev. B. 71 (2005) 014401] phase decoherence times T2=25 s of 29Si nuclear spins in single-crystal Si have been obtained at room temperature. We show that a linear chain of 29Si stable isotopes with nuclear spin I=1/2 embedded in a spin free 28Si stable isotope matrix can form an ideal building block for solid-state quantum information processors, especially, in the form of a quantum memory which requires a large number of operations within T2 for the continuous error correction.  相似文献   

18.
We show that the recent proposal by Hardy and Jordan for a test of local realism without the use of Bell inequalities can be implemented in two-photon coincidence measurements with linear polarizers, when the photon pairs are produced by parametric downconversion. If the probabilities measured with real detectors are proportional to the corresponding probabilities determined with ideal detectors, this method does not depend on the use of detectors with high or even known quantum efficiencies.Dedicated to H. Walther on the occasion of his 60th birthday  相似文献   

19.
We present an efficient one-step scheme for a single spin measurement based on nuclear magnetic resonance (NMR) techniques. This scheme considerably reduces the time of operation using a spin star network where a target spin and an ancillary spin are coupled to a ring of N spins. As opposed to the proposal in [Phys. Rev. Lett. 97 (2006) 100501] using a cubic lattice crystal to achieve a cubic speedup, the distinct advantage of this scheme is that under ideal conditions it requires the application of only one step to create a system of N correlated spins. In the process of single spin measurement, the total macroscopic magnetization, the individual magnetization and the transfer fidelity are calculated analytically as simple cosine functions of time and the amplitude of irradiation.  相似文献   

20.
The schemes on quantum dense coding and teleportation [Phys. Lett. A 364 (2007) 7] are revisited. By reformulizing one-dimensional n-qubit cluster states, we decompose the necessary multi-qubit collective unitary operation into a sequence of single-qubit Hadamard (H) and two-qubit controlled-not (C) operations. Our reduction makes the schemes feasible today.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号