首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We study the canonical and the coherent state quantizations of a particle moving in a magnetic field on the non-commutative plane. Using a θ-modified action, we perform the canonical quantization and analyze the gauge dependence of the theory. We compare coherent states quantizations obtained through Malkin-Man'ko states and circular squeezed states. The relation between these states and the “classical” trajectories is investigated, and we present numerical explorations of some semiclassical quantities.  相似文献   

2.
A new family of 2-component vector-valued coherent states for the quantum particle motion in an infinite square well potential is presented. They allow a consistent quantization of the classical phase space and observables for a particle in this potential. We then study the resulting position and (well-defined) momentum operators. We also consider their mean values in coherent states and their quantum dispersions.  相似文献   

3.
Using the notion of symplectic structure and Weyl (or star) product of non-commutative geometry, we construct unitary representations for the Galilei group and show how to rewrite the Schrödinger equation in phase space. This approach gives rise to a new procedure to derive Wigner functions without the use of the Liouville-von Neumann equation. Applications are presented by deriving the states of linear and nonlinear oscillators in terms of amplitudes of probability in phase space. The notion of coherent states is also discussed in this context.  相似文献   

4.
A.-S.F. Obada 《Physica A》2008,387(12):3065-3071
We construct a complete representation of the atomic information entropy of an arbitrary multi-level system. Our approach is applicable to all scenarios in which the quantum state shared by a single particle and fields is known. As illustrations we apply our findings to a single four-level atom strongly coupled to a cavity field and driven by a coherent laser field. In this framework, we discuss connections with entanglement frustration and entropic forms. We conclude by showing how the atomic information entropy can be extended to examine entanglement in multi-level atomic systems.  相似文献   

5.
Via the proper-time eigenstates (event states) instead of the proper-mass eigenstates (particle states), free-motion time-of-arrival theory for massive spin-1/2 particles is developed at the level of quantum field theory. The approach is based on a position-momentum dual formalism. Within the framework of field quantization, the total time-of-arrival is the sum of the single event-of-arrival contributions, and contains zero-point quantum fluctuations because the clocks under consideration follow the laws of quantum mechanics.  相似文献   

6.
The motion of a point object through a viscous field is considered. The friction is assumed to depend quadratically on velocity of the particle. The inverse problem of the variational calculus is solved and the Weyl quantization procedure is employed to write a Schrödinger equation. The solution of this equation shows that the quantum mechanical wave function is oscillatory for small values of the friction. Contrarily, for large values of the friction, the wave function resembles the solution of von Neumann shock problem.  相似文献   

7.
Dequantization is a set of rules which turn quantum mechanics (QM) into classical mechanics (CM). It is not the WKB limit of QM. In this paper we show that, by extending time to a 3-dimensional “supertime,” we can dequantize the system in the sense of turning the Feynman path integral version of QM into the functional counterpart of the Koopman-von Neumann operatorial approach to CM. Somehow this procedure is the inverse of geometric quantization and we present it in three different polarizations: the Schrödinger, the momentum and the coherent states ones.  相似文献   

8.
The dynamical properties of quantum entanglement in the integrable Jaynes-Cummings model with a Kerr nonlinearity are studied in terms of the reduced-density linear entropy with various Kerr coupling parameters and initial states, where the initial states are prepared by the coherent states placed in the corresponding phase space described in terms of canonical variables. The mean entanglement averaged over time is employed to investigate the behavior of entanglement of those coherent states. It is shown that the mean entanglement of the coherent states put near the centers of periodic orbits, both with a strong Kerr coupling and without a Kerr coupling, tends to be the minimal, and that the mean entanglement of the coherent states centered near the boundary with a strong Kerr coupling is the minimal while that without Kerr coupling is the maximal.  相似文献   

9.
Invariant creation and annihilation operators and related Fock states and coherent states are built up for the system of nonstationary fermionic forced oscillator.  相似文献   

10.
We study an analytically solvable model for decoherence of a two spin system embedded in a large spin environment. As a measure of entanglement, we evaluate the concurrence for the Bell states (Einstein-Podolsky-Rosen pairs). We find that while for two separate spin baths all four Bell states lose their coherence with the same time dependence, for a common spin bath, two of the states decay faster than the others. We explain this difference by the relative orientation of the individual spins in the pair. We also examine how the Bell inequality is violated in the coherent regime. Both for one bath and two bath cases, we find that while two of the Bell states always obey the inequality, the other two violate the inequality at early times.  相似文献   

11.
We study optical schemes for generating both a displaced photon and a displaced qubit via conditional measurement. Combining one mode prepared in different microscopic states (one-mode qubit, single photon, vacuum state) and another mode in macroscopic states (coherent state, single photon added coherent state), a conditional state in the other output mode exhibits properties of a superposition of the displaced vacuum and a single photon. We propose to use the displaced qubit and entangled states composed of the displaced photon as components for quantum information processing. Basic states of such a qubit are distinguishable from each other with high fidelity. We show that the qubit reveals both microscopic and macroscopic properties. Entangled displaced states with a coherent phase as an additional degree of freedom are introduced. We show that additional degree of freedom enables to implement complete Bell state measurement of the entangled displaced photon states.  相似文献   

12.
We obtain the analytical solution to the master equation in the photon number representation by using algebraic dynamical method in the nonautonomous case. Based on the solution we find that a two-mode coherent sate can be produced within dissipative background, and the averaged photon number for each mode is related to the damping constant, external field amplitude and coupling constant between two modes.  相似文献   

13.
Zavatta et al. [A. Zavatta, S. Viciani, M. Bellini, Science 306 (2004) 660; A. Zavatta, S. Viciani, M. Bellini, Phys. Rev. A 72 (2006) 023820], using parametric down-conversion, have carried out experiments to conditionally generate a single-photon added coherent state. In this Letter, we propose an extension of their method in order to generate the two-photon added coherent state, and point the way toward generating m-photon added coherent states for m>2, all using only one down-conversion crystal.  相似文献   

14.
The coherent states for a system of time-dependent singular potentials coupled to inverted CK (Caldirola-Kanai) oscillator are investigated by employing invariant operator method and Lie algebraic approach. We considered Coulomb potential and inverse quadratic potential as singularities of the system. The spectrum of quantum states is discrete for λ < 0 while continuous for λ ? 0. The probability densities for both Fock state and coherent state are converged to the center as time goes by according to the dissipation of energy. We confirmed that the probability density in the coherent state oscillates back and forth like a classical wave packet.  相似文献   

15.
任振忠  景辉  张现周 《中国物理快报》2008,25(10):3562-3565
With nonlinear Mach-Zehnder interferometer (NLMZI) and a typed beta-barium borate (BBO) crystal, we optically generate single-mode excited entangled coherent states. This scheme can be easily generalized to generate two-mode excited entangled coherent states. We simply analyse different influences of single- and two-mode photon excitations on entangled coherent states.  相似文献   

16.
In the framework of 't Hooft's quantization proposal, we show how to obtain from the composite system of two classical Bateman's oscillators a quantum isotonic oscillator. In a specific range of parameters, such a system can be interpreted as a particle in an effective magnetic field, interacting through a spin-orbit interaction term. In the limit of a large separation from the interaction region one can describe the system in terms of two irreducible elementary subsystems which correspond to two independent quantum harmonic oscillators.  相似文献   

17.
In this communication we introduce the problem of time-dependent frequency converter under the action of external random force. We have assumed that the coupling parameter and the phase pump are explicitly time dependent. Using the equations of motion in the Heisenberg picture the dynamical operators are obtained, however, under a certain integrability condition. When the system is initially prepared in the even coherent states the squeezing phenomenon is discussed. The correlation function is also considered and it has been shown that the nonclassical properties are apparent and sensitive to any variation in the integrability parameter. Furthermore, the wave function in Schrödinger picture is calculated and used it to derive the wave function in the coherent states. The accurate definition of the creation and annihilation operators are also introduced and employed to diagonalize the Hamiltonian system.  相似文献   

18.
19.
Studies on a generalized Coleman-Hepp model are done on the basis of a spin coherent state representation and a transformation property of the model Hamiltonian. Namely, transforming the original model Hamiltonian into a simpler form, we can determine time evolution of the whole system by successive applications of rotation operators in a spinor space. Dynamics of detector spins as well as that of an incident particle are fully discussed. Explicit numerical evaluations are also performed. Relevance of our solution to a generalized Cini model is also briefly mentioned. Received 24 August 1999  相似文献   

20.
A possible way for the consistent probability interpretation of the Klein-Gordon equation is proposed. It is assumed that some states of a scalar charged particle cannot be physically realized. The rest of quantum states are proven to have positive-definite probability distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号