首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The error model of a quantum computer is essential for optimizing quantum algorithms to minimize the impact of errors using quantum error correction or error mitigation. Noise with temporal correlations, e.g. low-frequency noise and context-dependent noise, is common in quantum computation devices and sometimes even significant. However, conventional tomography methods have not been developed for obtaining an error model describing temporal correlations. In this paper,we propose self-consistent tomography protocols to obtain a model of temporally correlated errors, and we demonstrate that our protocols are efficient for low-frequency noise and context-dependent noise.  相似文献   

2.
Linear optics quantum logic gates are the best tool to generate multiphoton entanglement. Simplifying a recent approach, we were able to implement the conditional phase gate with only one second-order interference at a polarization dependent beam splitter, thereby significantly increasing its stability. The improved quality of the gate is evaluated by analyzing its entangling capability and by performing full process tomography. The achieved results ensure that this device is well suited for implementation in various multiphoton quantum information protocols.  相似文献   

3.
S. S. Straupe 《JETP Letters》2016,104(7):510-522
We provide a review of the experimental and theoretical research in the field of quantum tomography with an emphasis on recently developed adaptive protocols. Several statistical frameworks for adaptive experimental design are discussed. We argue in favor of the Bayesian approach, highlighting both its advantages for a statistical reconstruction of unknown quantum states and processes, and utility for adaptive experimental design. The discussion is supported by an analysis of several recent experimental implementations and numerical recipes.  相似文献   

4.
Shaham A  Eisenberg HS 《Optics letters》2012,37(13):2643-2645
We demonstrate an isotropic depolarizing channel with a controllable degree of depolarization. The depolarizer is composed of four birefringent crystals and half-wave plates. Quantum process tomography results of the depolarization effect on single photons agree well with the theoretical prediction. This depolarizer can be used to test quantum communication protocols with photons.  相似文献   

5.
A new methodology of statistical estimation of the quality of quantum measurement protocols is considered. The method is based on studying the completeness, adequacy, and accuracy of quantum measurement protocols. The completeness is estimated on the basis of considering a singular decomposition of a special matrix, which is constructed based on the measurement operators. The estimate of adequacy supposes the presence of redundancy in the measurement protocol as compared to the minimally possible number of measurements that are necessary for full reconstruction of a quantum state. The adequacy of quantum measurements is estimated as the degree of how much the redundant statistical data agree with the laws of quantum theory. The accuracy characteristics of the statistical reconstruction of arbitrary quantum states are studied based on the universal statistical distribution for accuracy losses. Examples of applying the developed methods are presented for seven quantum protocols based on the geometry of polyhedra with a high degree of symmetry.  相似文献   

6.
Blind quantum computation (BQC) allows a client with relatively few quantum resources or poor quantum technologies to delegate his computational problem to a quantum server such that the client's input, output, and algorithm are kept private. However, all existing BQC protocols focus on correctness verification of quantum computation but neglect authentication of participants' identity which probably leads to man-in-the-middle attacks or denial-of-service attacks. In this work, we use quantum identification to overcome such two kinds of attack for BQC, which will be called QI-BQC. We propose two QI-BQC protocols based on a typical single-server BQC protocol and a double-server BQC protocol. The two protocols can ensure both data integrity and mutual identification between participants with the help of a third trusted party (TTP). In addition, an unjammable public channel between a client and a server which is indispensable in previous BQC protocols is unnecessary, although it is required between TTP and each participant at some instant. Furthermore, the method to achieve identity verification in the presented protocols is general and it can be applied to other similar BQC protocols.  相似文献   

7.
Quantum operations describe any state change allowed in quantum mechanics, including the evolution of an open system or the state change due to a measurement. We present a general method based on quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. As input the method needs only a single entangled state. The feasibility of the technique for the electromagnetic field is shown, and the experimental setup is illustrated based on homodyne tomography of a twin beam.  相似文献   

8.
By utilizing the delocalized correlation of entangled states in quantum information theory, a novel method on acknowledgments of quantum information among three-party is presented, and then two three-party quantum network communication protocols based on quantum teleportation are presented, namely, three-party stop-wait quantum communication protocol and three-party selective automatic repeat quantum communication protocol. In the two proposed protocols, the data frames composed of qubits are teleported via three-party quantum teleportation, the two receivers simultaneously receive quantum frames from the sender, and then return quantum acknowledgment frames or quantum negative acknowledgment frames via quantum entanglement channels. The sender simultaneously receives and deals with quantum acknowledgment frames and quantum negative acknowledgment frames from the two receivers, thus the processing delay on returning quantum frames is reduced. And due to the transience of transferring quantum information, the returning of quantum acknowledgment frames and quantum negative acknowledgment frames are completed instantaneously, the proposed protocols reduce the transmission delay and improve the communication efficiency. During the whole course of communications, the classical channels are only used to transmit the measurement message, so the burdens of classical channels are reduced.  相似文献   

9.
The exact reconstruction of many-body quantum systems is one of the major challenges in modern physics,because it is impractical to overcome the exponential complexity problem brought by high-dimensional quantum manybody systems.Recently,machine learning techniques are well used to promote quantum information research and quantum state tomography has also been developed by neural network generative models.We propose a quantum state tomography method,which is based on a bidirectional gated recurrent unit neural network,to learn and reconstruct both easy quantum states and hard quantum states in this study.We are able to use fewer measurement samples in our method to reconstruct these quantum states and to obtain high fidelity.  相似文献   

10.
Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhances the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources.  相似文献   

11.
The intimate connection between the Banach space wavelet reconstruction method for each unitary representation of a given group and some of well known quantum tomographies, such as: tomography of rotation group, Spinor tomography and tomography of Unitary group, is established. Also both the atomic decomposition and Banach frame nature of these quantum tomographic examples is revealed in details.  相似文献   

12.
The most crucial issue of quantum cryptography protocols is its security. There exists many ways to attack the quantum communication process. In this paper, we present a model checking method for modeling the eavesdropping in quantum information protocols. So when the security properties of a certain protocol are needed to be verified, we can directly use the models which are already built. Here we adopt the probabilistic model checking tool—PRISM to model these attack methods. The verification results show that the detection rate of eavesdropping is approximately close to 1 when enough photons are transmitted.  相似文献   

13.
We present two protocols for the controlled remote implementation of quantum operations between three-party high-dimensional systems. Firstly, the controlled teleportation of an arbitrary unitary operation by bidirectional quantum state teleportaion (BQST) with high-dimensional systems is considered. Then, instead of using the BQST method, a protocol for controlled remote implementation of partially unknown operations belonging to some restricted sets in high-dimensional systems is proposed. It is shown that, in these protocols, if and only if the controller would like to help the sender with the remote operations, the controlled remote implementation of quantum operations for high-dimensional systems can be completed.  相似文献   

14.
In this study the intimate connection is established between the Banach space wavelet reconstruction method on homogeneous spaces with both singular and nonsingular vacuum vectors, and some of the well known quantum tomographies, such as: Moyal-representation for a spin, discrete phase space tomography, tomography of a free particle, Homodyne tomography, phase space tomography and SU(1,1) tomography. And both the atomic decomposition and the Banach frame nature of these quantum tomographic examples are also revealed in details. Finally the connection between the wavelet formalism on Banach space and Q-function is discussed.  相似文献   

15.
16.
Using high-dimensional quantum error-avoiding code, we present two new quantum key distribution protocols over a collective noisy channel, i.e. six-photon and five-photon quantum error-avoiding codes. Compared with the previous protocols using four-photon and three-photon quantum error-avoiding code, the qubit efficiencies of the new protocols have increases of 16.67% and 5% respectively. In addition, the security of these protocols is analysed with a conclusion that the new protocols are much more secure than the four-photon and three-photon ones.  相似文献   

17.
We introduce three new quantum protocols involving noisy quantum channels and entangled states, and relate them operationally and conceptually with four well-known old protocols. Two of the new protocols (the mother and father) can generate the other five "child" protocols by direct application of teleportation and superdense coding, and can be derived in turn by making the old protocols "coherent." This gives very simple proofs for two famous old protocols (the hashing inequality and quantum channel capacity) and provides the basis for optimal trade-off curves in several quantum information processing tasks.  相似文献   

18.
An operational method has been proposed for estimating the efficiency of quantum cryptography protocols for quantum states with discrete variables. The method is based on the estimate of the quality of the protocol by means of a universal asymptotic distribution of the characteristic of the accuracy of the reconstruction of the quantum state, which is called fidelity. For a specially designed measurement matrix, the condition number, which is minimal for the optimal protocol, is introduced. The method has been tested in a numerical simulation and real experiments with polarization qubits. It has been shown that the optimal choice of a polarization transformer makes it possible to strongly improve the quality of the reconstruction of states.  相似文献   

19.
张盛  王剑  唐朝京  张权 《中国物理 B》2011,20(8):80306-080306
As an important application of the quantum network communication,quantum multiparty conference has made multiparty secret communication possible.Previous quantum multiparty conference schemes based on quantum data encryption are insensitive to network topology.However,the topology of the quantum network significantly affects the communication efficiency,e.g.,parallel transmission in a channel with limited bandwidth.We have proposed two distinctive protocols,which work in two basic network topologies with efficiency higher than the existing ones.We first present a protocol which works in the reticulate network using Greeberger-Horne-Zeilinger states and entanglement swapping.Another protocol,based on quantum multicasting with quantum data compression,which can improve the efficiency of the network,works in the star-like network.The security of our protocols is guaranteed by quantum key distribution and one-time-pad encryption.In general,the two protocols can be applied to any quantum network where the topology can be equivalently transformed to one of the two structures we propose in our protocols.  相似文献   

20.
The essence and basic structural elements of the method of polarization tomography of quantum radiation (the reconstruction of the polarization states of a field solely from polarization measurements) are described. The essential features of the method are discussed in comparison with usual field and spin tomographies. A general scheme for experimentally implementing this method is suggested and its use in polarization tomography of biphotonic radiation with hidden polarization is briefly analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号