首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new approach to soliton equations, based on τ functions (or Hirota's dependent variables), vertex operators and the Clifford algebra of free fermions, is applied to study a new hierarchy of Kadomtsev-Petviashvili type equations (the BKP hierarchy). The infinite-dimensional orthogonal group acts on the space of BKP τ-functions. The Sawada-Kotera equation is obtained as a reduction of BKP. Its infinitesimal transformations constitute the Euclidean Lie Algebra A2(2).  相似文献   

2.
Direct modeling of the dynamics of a system of many Coulomb particles is applied to analyze the formation stage of a metastable plasma state from an initial, highly nonideal state, and also to consider some properties of this metastable supercooled state. It is shown that relaxation of the average particle kinetic energy may be characterized by a universal dimensionless function and in particular, there is a limiting degree of plasma nonideality which may be achieved in the metastable state, in the absence of any external influence. The calculated pair correlation functions agree with the results of the Debye model, even outside its limits of validity. The time dependence of the total dipole moment of the particle system is investigated. It is shown that oscillations of the total dipole moment are observed. These collective oscillations take place at a frequency slightly below the Langmuir frequency and the oscillations of free and bound electrons are in antiphase. The hypothesis is put forward that recombination relaxation is frozen as a result of interaction between quasibound electrons and Langmuir oscillations of free electrons. Zh. Tekh. Fiz. 67, 42–52 (August 1997)  相似文献   

3.
陈琼  海阔  海文华 《中国物理》2007,16(12):3662-3667
A single particle magneto-confined in a one-dimensional (1D) quantum wire experiences a harmonic potential, and imposing a sharply focused laser beam on an appropriate site shapes a $\delta$ potential. The theoretical investigation has demonstrated that for a sufficiently strong $\delta$ pulse the quantum motional stationary state of the particle is one of the eigenstates of the free harmonic oscillator, and it is determined by the site of the laser beam uniquely, namely a quantum state is admissible if and only if the laser site is one of its nodes. The numerical computation shows that all the nodes of the lower energy states with quantum numbers $n \le 20$, except the coordinate origin, are mutually different. So we can manipulate the multiphoton transitions between the quantum states by adjusting the position of the laser $\delta$ pulse and realize the transition from an unknown higher excitation state to a required lower energy state.  相似文献   

4.
Correlations between non-identical particles at small relative velocity probe asymmetries in the average space-time emission points at freeze-out. The origin of such asymmetries may be from long-lived resonances, bulk collective effects, or differences in the freeze-out scenario for the different particle species. STAR has extracted pion-proton correlation functions from a dataset of Au+Au collisions at √s NN = 200 GeV. We present correlation functions in the spherical harmonic decomposition representation, for different centralities and for different combinations of pions and (anti-)protons.  相似文献   

5.
A laser-Doppler instrument has been used to measure the migration velocity of NaCl particles in an electrohydrodynamic flow field of an electrical precipitator. The measured average migration velocity of 1.40-μm particles (number distribution median with a geometric standard devitation of 1.46) is approximately five to six times higher than the calculated steady-state velocity for a 1.40-μm particle, provided there is a saturation charge of at least 90f%. Further, the particle velocities in the main flow direction are also influenced by the electrical operation conditions. Both observations demonstrate the important role of the state of the electrohydrodynamic flow field (superposition of moving gas ions and neutral gas molecules) on the particle transport, characterized by the dimensionless electrohydrodynamic number NEHD. A comparison between six different electrohydrodynamic states revealed that NEHD ≈? 1 is a critical value for the mutual interactions between the gas ions and the neutral gas phase. Whereas for NEHD values > 1 the stochastic particle motion is chiefly determined by the nonsteady-state character of the negative corona, for NEHD values < 1 the particle velocity fluctuations are governed by the turbulence level of the neutral fluid. These finding might be helpful in adjusting the operating conditions in electrical precipitators for and optimized particle separation.  相似文献   

6.
We propose a simple classical model of the zitterbewegung. In this model spin is proportional to the velocity of the particle, the component parallel top is constant and the orthogonal components are oscillating with2p frequency. The quantization of the system gives wave equations for spin,0, 1/2, 1, 3/2,…, etc. respectively. These equations are convenient for massless particles. The wave equation of the spin-1, massless free particle is equivalent to the Maxwell equations and the state functions have a probability interpretation and exhibit conserved current densities. The ground state has zero energy.  相似文献   

7.
8.
We consider the dynamics of the disordered, one-dimensional, symmetric zero range process in which a particle from an occupied site k hops to its nearest neighbor with a quenched rate w(k). These rates are chosen randomly from the probability distribution f(w) ∼ (wc) n , where c is the lower cutoff. For n>0, this model is known to exhibit a phase transition in the steady state from a low density phase with a finite number of particles at each site to a high density aggregate phase in which the site with the lowest hopping rate supports an infinite number of particles. In the latter case, it is interesting to ask how the system locates the site with globally minimum rate. We use an argument based on the local equilibrium, supported by Monte Carlo simulations, to describe the approach to the steady state. We find that at large enough time, regions with a smooth density profile are described by a diffusion equation with site-dependent rates, while the isolated points where the mass distribution is singular act as the boundaries of these regions. Our argument implies that the relaxation time scales with the system size L as L z with z = 2 + 1/(n + 1) for n>1 and suggests a different behavior for n<1.  相似文献   

9.
10.
We study a particle system with hopping (random walk) dynamics on the integer lattice ? d . The particles can exist in two states, active or inactive (sleeping); only the former can hop. The dynamics conserves the number of particles; there is no limit on the number of particles at a given site. Isolated active particles fall asleep at rate λ>0, and then remain asleep until joined by another particle at the same site. The state in which all particles are inactive is absorbing. Whether activity continues at long times depends on the relation between the particle density ζ and the sleeping rate λ. We discuss the general case, and then, for the one-dimensional totally asymmetric case, study the phase transition between an active phase (for sufficiently large particle densities and/or small λ) and an absorbing one. We also present arguments regarding the asymptotic mean hopping velocity in the active phase, the rate of fixation in the absorbing phase, and survival of the infinite system at criticality. Using mean-field theory and Monte Carlo simulation, we locate the phase boundary. The phase transition appears to be continuous in both the symmetric and asymmetric versions of the process, but the critical behavior is very different. The former case is characterized by simple integer or rational values for critical exponents (β=1, for example), and the phase diagram is in accord with the prediction of mean-field theory. We present evidence that the symmetric version belongs to the universality class of conserved stochastic sandpiles, also known as conserved directed percolation. Simulations also reveal an interesting transient phenomenon of damped oscillations in the activity density.  相似文献   

11.
We present a microscopic model for nanoparticles, of the maghemite (-Fe2O3) type, and perform classical Monte Carlo simulations of their magnetic properties. On account of M?ssbauer spectroscopy and high-field magnetisation results, we consider a particle as composed of a core and a surface shell of constant thickness. The magnetic state in the particle is described by the anisotropic classical Dirac-Heisenberg model including exchange and dipolar interactions and bulk and surface anisotropy. We consider the case of ellipsoidal (or spherical) particles with free boundaries at the surface. Using a surface shell of constant thickness ( nm) we vary the particle size and study the effect of surface magnetic disorder on the thermal and spatial behaviors of the net magnetisation of the particle. We study the shift in the surface “critical region” for different surface-to-core ratios of the exchange coupling constants. It is also shown that the profile of the local magnetisation exhibits strong temperature dependence, and that surface anisotropy is responsible for the non saturation of the magnetisation at low temperatures. Received 1 September 1999 and Received in final form 3 November 1999  相似文献   

12.
Coupling the mass-energy relationδE≧mc2 to the uncertainty relationδE δt ≧ ? produces fluctuations in the number of particles at short distances and scatterings of particle pairs independent of any specific “interaction” mechanism. This observation allows the construction of a scattering theory in which there are only particles and the void, but particle number can change. We consider a system of three massive particles (hadrons) in the energy region below the first production threshold for a fourth hadron and above the first anomalous threshold for the presence of a fourth “virtual” hadron. The on-shell Faddeev equations, containing only two-particle scattering phases for positive two particle energies, provide a convergent, unitary, and readily soluble dynamics for this system. If any of the pairs can coalesce into a different particle with a rest energy less than the sum of the rest energies of the pair, the equations can be readily extended to describe 3-2 and 2–3 transitions involving this particle (coalescence, breakup) elastic scattering from it, and if there is more than one such particle 2-2 rearrangements. The three-body “bound state” requires a well defined analytic continuation. Features of more conventional calculations of three-nucleon problems which provide examples of this structure are discussed. Since only free particles occur in the theory, and the only failure of energy conservation is that required by the uncertainty principle for (free-particle) intermediate states, these one-variable equations might be extended to particles with the relativistic connection between mass, energy and momentum, and transitions in which the full rest energy of the particle which appears or disappears must be provided. The non-linear “crossed” theory for such particles has not been written down, but if the relativistic boundary condition model of Brayshaw is viewed as representing these crossed processes by a phenomenological core, then a crossed theory requiring the π to be a bound state of three π's might predict the π-π S-wave scattering length in theI=0 state in terms of the pion Compton wavelength (and hence the position and the width of the?) and will then show that the? in turn generates asingle ω resonance at about the right place. Implications are discussed.  相似文献   

13.
The problem of ferromagnetism – associated with a ground state with maximal total spin – is discussed in the framework of a hard-core model, which forbids the occupancy at each site with more than one particle. It is shown that the emergence of ferromagnetism on finite square lattices crucially depends on the statistics of the particles. Fermions (electrons) lead to the well-known instabilities for finite hole densities, whereas for bosons (with spin) ferromagnetism appears to be stable for all hole densities.  相似文献   

14.
We examine the time evolution of a quantized field in external backgrounds that violate the stability of vacuum (particle-creating backgrounds). Our purpose is to study the exact form of the final quantum state (the density operator at the final instant of time) that has emerged from a given arbitrary initial state (from a given arbitrary density operator at the initial time instant) in the course of evolution. We find a generating functional that allows one to obtain density operators for an arbitrary initial state. Averaging over states of the subsystem of antiparticles (particles), we obtain explicit forms of reduced density operators for the subsystem of particles (antiparticles). Analyzing one-particle correlation functions, we establish a one-to-one correspondence between these functions and the reduced density operators. It is shown that in the general case a presence of bosons (e.g., gluons) in the initial state increases the creation rate of the same type of bosons. We discuss the question (and its relation to the initial stage of quark–gluon plasma formation) whether a thermal form of one-particle distribution can appear even if the final state of the complete system is not in thermal equilibrium. In this respect, we discuss some cases when pair-creation by an electric-like field can mimic the one-particle thermal distribution. We apply our technics to some QFT problems in slowly varying electric-like backgrounds: electric, SU(3) chromoelectric, and metric. In particular, we analyze the time and temperature behavior of the mean numbers of created particles, provided that the effects of switching the external field on and off are negligible. It is demonstrated that at high temperatures and in slowly varying electric fields the rate of particle-creation is essentially time-dependent.  相似文献   

15.
Fluorescence spectra from individual micron-sized atmospheric aerosol particles were measured by a Dual-wavelength-excitation Particle Fluorescence Spectrometer (DPFS). Particles were drawn into our laboratory at Adelphi, MD, an urban site in the Washington, DC, metroplex and within the Yale University campus at New Haven, CT. Two fluorescence spectra were obtained for every individual particle as it was moving through the DPFS system and excited sequentially by single laser pulses at 263 and 351 nm. There were around ten to a few hundred particles detected per second and up to a few million per day within the 1–10 μm particle size range. The majority of the particles have weak fluorescence, but 10–50% of the particles have fluorescence signals above the noise level at both sites at different time period. For the first time, these Ultra Violet laser-induced-fluorescence (UV-LIF) spectra from individual particles were integrated every 10 min, which forms a group of about a few thousand to a few tens of thousand particles, to provide the averaged background atmospheric fluorescence spectral profiles which may be helpful in the development of bioaerosol detection systems, particularly those systems based on integrated fluorescence from a group of aerosol particles, such as Light Detection And Rangeing (LIDAR) remotor biosensor and the point sensor based on collected particles on substrate. These integrated spectral profiles had small variations from time to time and were distinguishable from that of the bacterial simulant B. subtilis. Also for the first time, the individual spectra excited by a 351 nm laser were grouped using unstructured hierarchical cluster analysis, with parameters chosen so that spectra clustered into 8 main categories. They showed less spectral variations than that excited by a 263-nm laser. Over 98% of the spectra were able to be grouped into 8 clusters, and over 90% of the fluorescent particles were in clusters 3–5 with a fluorescence emission peak around 420–470 nm; these were mostly from biological and organic carbon-containing compounds. Integrated fluorescence spectral profiles and averaged spectra for each cluster show high similarity between New Haven, CT and Adelphi, MD.  相似文献   

16.
Some results on the wave functions of a Dirac particle in a point charge Coulomb field are presented. Angular momentum and parity eigenfunctions are tabulated and used to construct solutions representing asymptotically a plane wave plus incoming or outgoing spherical waves. The solutions forr → 0 are exhibited in a form closely similar to the corresponding free particle spinors and are used to construct generalizations of the Casimir projection operators for positive or negative energy particles. The various wave functions presented are useful in calculations such as nuclear beta decay in which it is necessary to take into account final (or initial) state Coulomb interactions. Because of the similarity of the wave functions to those of a free particle, calculations including rigorously all Coulomb corrections for such processes as allowed beta decay can be performed with little more effort than is involved in a calculation using only plane waves.  相似文献   

17.
It is shown that quantum fields for massive particles with braid group statistics (Plektons) in three-dimensional space-time cannot be free, in a quite elementary sense: They must exhibit elastic two-particle scattering into every solid angle, and at every energy. This also implies that for such particles there cannot be any operators localized in wedge regions which create only single particle states from the vacuum and which are well-behaved under the space-time translations (so-called temperate polarization- free generators). These results considerably strengthen an earlier “NoGo-theorem for ’free’ relativistic Anyons”.  相似文献   

18.
The systematic change of a resonance state with high momenta is studied with increasing particle density in the 2D attractive Hubbard model. Within the conserving self-consistent T-matrix approximation, we present the spectral functions for the one and two particle Green's functions as well as the self-energy. In the small density limit, the resonant state becomes stable and the result from the self-consistent calculations shows a good agreement with that from a simple analytical calculation. As particle density is increased, the resonance state acquires a short lifetime due to the increasing decay into two free particles.  相似文献   

19.
We consider prerequisites and investigate some optimal methods for the formation of a correlated coherent state of interacting particles in nonstationary systems. We study the influence of the degree of particle correlation on the probability of their passage through the Coulomb barrier for the realization of nuclear reactions at low energies. For such processes, the tunneling probability and, accordingly, the probability of nuclear reactions can grow by many orders of magnitude (in particular, the barrier transparency increases from D r = 0 ≈ 10−42 for an uncorrelated state to D |r| = 0.98 ≈ 0.1 at a correlation coefficient |r| ≈ 0.98). The formation of a correlated particle state is considered in detail for different types of monotonic decrease in the frequency of a harmonic oscillator with the particle located in its parabolic field. For the first time, we have considered the peculiarities and investigated the efficiency of the creation of a correlated state under a periodic action on a harmonic oscillator. This method is shown to lead to rapid formation of a strongly correlated particle state that provides an almost complete clearing of the potential barrier even for a narrow range of oscillator frequency variations.  相似文献   

20.
In this work, the effects of model dimensionality, particle shrinkage, and boundary layer reactions on particle-scale modelling of biomass char conversion under pulverized fuel combustion conditions have been analysed by using six models: zero-dimensional models with constant particle size (0D_Cons) or shrinking particle size (0D_SPM), one-dimensional models with/without considering particle shrinkage (1D_Cons/1D_SPM), and 1D_Cons and 1D_SPM with considering boundary layer reactions (1D_Cons_BH and 1D_SPM_BH). A comparison with existing experimental data shows that the 1D_SPM_BH model with consideration of intra-particle heat and mass transfer, particle shrinkage, and boundary layer reactions is an appropriate model to describe biomass char conversion over a wide range of conditions. The 0D_Cons model is a good approximation for the conditions of small particle size (< 1 mm) at 1273–1473 K, but overestimates the char conversion rate for larger biomass char particle or at high temperatures (regime III). The 0D_SPM model gives a reasonable prediction on char conversion time but predicts a larger contribution of reaction between char and O2 as compared to the 1D_SPM_BH model. The consideration of intra-particle heat and mass transfer in particle-scale modelling (1D_Cons and 1D_SPM) is beneficial to improving the model prediction of char conversion time and the contributions of char oxidation and gasification reactions. The boundary layer reactions have a significant effect on the prediction of char conversion for large particles (> 1 mm) and high temperatures (> 1473 K). An implication for the selection of a particle-scale model in CFD modelling is also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号